Pregeometry over locally o-minimal structures and dimension

IF 0.4 4区 数学 Q4 LOGIC
Masato Fujita
{"title":"Pregeometry over locally o-minimal structures and dimension","authors":"Masato Fujita","doi":"10.1002/malq.202200069","DOIUrl":null,"url":null,"abstract":"<p>We define a discrete closure operator for definably complete locally o-minimal structures <math>\n <semantics>\n <mi>M</mi>\n <annotation>$\\mathcal {M}$</annotation>\n </semantics></math>. The pair of the underlying set of <math>\n <semantics>\n <mi>M</mi>\n <annotation>$\\mathcal {M}$</annotation>\n </semantics></math> and the discrete closure operator forms a pregeometry. We define the rank of a definable set over a set of parameters using this fact and call it <math>\n <semantics>\n <mo>discl</mo>\n <annotation>$\\operatorname{discl}$</annotation>\n </semantics></math>-dimension. A definable set <i>X</i> is of dimension equal to the <math>\n <semantics>\n <mo>discl</mo>\n <annotation>$\\operatorname{discl}$</annotation>\n </semantics></math>-dimension of <i>X</i>. The structure <math>\n <semantics>\n <mi>M</mi>\n <annotation>$\\mathcal {M}$</annotation>\n </semantics></math> is simultaneously a first-order topological structure. The dimension rank of a set definable in the first-order topological structure <math>\n <semantics>\n <mi>M</mi>\n <annotation>$\\mathcal {M}$</annotation>\n </semantics></math> also coincides with its dimension.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"69 4","pages":"472-481"},"PeriodicalIF":0.4000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200069","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

We define a discrete closure operator for definably complete locally o-minimal structures M $\mathcal {M}$ . The pair of the underlying set of M $\mathcal {M}$ and the discrete closure operator forms a pregeometry. We define the rank of a definable set over a set of parameters using this fact and call it discl $\operatorname{discl}$ -dimension. A definable set X is of dimension equal to the discl $\operatorname{discl}$ -dimension of X. The structure M $\mathcal {M}$ is simultaneously a first-order topological structure. The dimension rank of a set definable in the first-order topological structure M $\mathcal {M}$ also coincides with its dimension.

局部零最小结构和维数的预几何
我们为可定义完备的局部0 -极小结构M $\mathcal {M}$定义了一个离散闭包算子。M $\mathcal {M}$的基础集合和离散闭包运算符的对构成一个预几何。我们使用这个事实来定义一个可定义集合在一组参数上的秩,并称之为discl $\operatorname{discl}$ -dimension。一个可定义集合X的维数等于X的discl $\operatorname{discl}$ -维数。结构M $\mathcal {M}$同时是一个一阶拓扑结构。在一阶拓扑结构M $\mathcal {M}$中可定义的集合的维数秩也与其维数重合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信