Pregeometry over locally o-minimal structures and dimension

Pub Date : 2023-08-30 DOI:10.1002/malq.202200069
Masato Fujita
{"title":"Pregeometry over locally o-minimal structures and dimension","authors":"Masato Fujita","doi":"10.1002/malq.202200069","DOIUrl":null,"url":null,"abstract":"<p>We define a discrete closure operator for definably complete locally o-minimal structures <math>\n <semantics>\n <mi>M</mi>\n <annotation>$\\mathcal {M}$</annotation>\n </semantics></math>. The pair of the underlying set of <math>\n <semantics>\n <mi>M</mi>\n <annotation>$\\mathcal {M}$</annotation>\n </semantics></math> and the discrete closure operator forms a pregeometry. We define the rank of a definable set over a set of parameters using this fact and call it <math>\n <semantics>\n <mo>discl</mo>\n <annotation>$\\operatorname{discl}$</annotation>\n </semantics></math>-dimension. A definable set <i>X</i> is of dimension equal to the <math>\n <semantics>\n <mo>discl</mo>\n <annotation>$\\operatorname{discl}$</annotation>\n </semantics></math>-dimension of <i>X</i>. The structure <math>\n <semantics>\n <mi>M</mi>\n <annotation>$\\mathcal {M}$</annotation>\n </semantics></math> is simultaneously a first-order topological structure. The dimension rank of a set definable in the first-order topological structure <math>\n <semantics>\n <mi>M</mi>\n <annotation>$\\mathcal {M}$</annotation>\n </semantics></math> also coincides with its dimension.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We define a discrete closure operator for definably complete locally o-minimal structures M $\mathcal {M}$ . The pair of the underlying set of M $\mathcal {M}$ and the discrete closure operator forms a pregeometry. We define the rank of a definable set over a set of parameters using this fact and call it discl $\operatorname{discl}$ -dimension. A definable set X is of dimension equal to the discl $\operatorname{discl}$ -dimension of X. The structure M $\mathcal {M}$ is simultaneously a first-order topological structure. The dimension rank of a set definable in the first-order topological structure M $\mathcal {M}$ also coincides with its dimension.

分享
查看原文
局部零最小结构和维数的预几何
我们为可定义完备的局部0 -极小结构M $\mathcal {M}$定义了一个离散闭包算子。M $\mathcal {M}$的基础集合和离散闭包运算符的对构成一个预几何。我们使用这个事实来定义一个可定义集合在一组参数上的秩,并称之为discl $\operatorname{discl}$ -dimension。一个可定义集合X的维数等于X的discl $\operatorname{discl}$ -维数。结构M $\mathcal {M}$同时是一个一阶拓扑结构。在一阶拓扑结构M $\mathcal {M}$中可定义的集合的维数秩也与其维数重合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信