{"title":"VTC 0$\\mathsf{VTC^0}$作为指数整数部分的模型","authors":"Emil Jeřábek","doi":"10.1002/malq.202300001","DOIUrl":null,"url":null,"abstract":"<p>We prove that (additive) ordered group reducts of nonstandard models of the bounded arithmetical theory <math>\n <semantics>\n <msup>\n <mi>VTC</mi>\n <mn>0</mn>\n </msup>\n <annotation>$\\mathsf {VTC^0}$</annotation>\n </semantics></math> are recursively saturated in a rich language with predicates expressing the integers, rationals, and logarithmically bounded numbers. Combined with our previous results on the construction of the real exponential function on completions of models of <math>\n <semantics>\n <msup>\n <mi>VTC</mi>\n <mn>0</mn>\n </msup>\n <annotation>$\\mathsf {VTC^0}$</annotation>\n </semantics></math>, we show that every countable model of <math>\n <semantics>\n <msup>\n <mi>VTC</mi>\n <mn>0</mn>\n </msup>\n <annotation>$\\mathsf {VTC^0}$</annotation>\n </semantics></math> is an exponential integer part of a real-closed exponential field.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300001","citationCount":"1","resultStr":"{\"title\":\"Models of \\n \\n \\n VTC\\n 0\\n \\n $\\\\mathsf {VTC^0}$\\n as exponential integer parts\",\"authors\":\"Emil Jeřábek\",\"doi\":\"10.1002/malq.202300001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that (additive) ordered group reducts of nonstandard models of the bounded arithmetical theory <math>\\n <semantics>\\n <msup>\\n <mi>VTC</mi>\\n <mn>0</mn>\\n </msup>\\n <annotation>$\\\\mathsf {VTC^0}$</annotation>\\n </semantics></math> are recursively saturated in a rich language with predicates expressing the integers, rationals, and logarithmically bounded numbers. Combined with our previous results on the construction of the real exponential function on completions of models of <math>\\n <semantics>\\n <msup>\\n <mi>VTC</mi>\\n <mn>0</mn>\\n </msup>\\n <annotation>$\\\\mathsf {VTC^0}$</annotation>\\n </semantics></math>, we show that every countable model of <math>\\n <semantics>\\n <msup>\\n <mi>VTC</mi>\\n <mn>0</mn>\\n </msup>\\n <annotation>$\\\\mathsf {VTC^0}$</annotation>\\n </semantics></math> is an exponential integer part of a real-closed exponential field.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300001\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Models of
VTC
0
$\mathsf {VTC^0}$
as exponential integer parts
We prove that (additive) ordered group reducts of nonstandard models of the bounded arithmetical theory are recursively saturated in a rich language with predicates expressing the integers, rationals, and logarithmically bounded numbers. Combined with our previous results on the construction of the real exponential function on completions of models of , we show that every countable model of is an exponential integer part of a real-closed exponential field.