Models of VTC 0 $\mathsf {VTC^0}$ as exponential integer parts

Pub Date : 2023-08-02 DOI:10.1002/malq.202300001
Emil Jeřábek
{"title":"Models of \n \n \n VTC\n 0\n \n $\\mathsf {VTC^0}$\n as exponential integer parts","authors":"Emil Jeřábek","doi":"10.1002/malq.202300001","DOIUrl":null,"url":null,"abstract":"<p>We prove that (additive) ordered group reducts of nonstandard models of the bounded arithmetical theory <math>\n <semantics>\n <msup>\n <mi>VTC</mi>\n <mn>0</mn>\n </msup>\n <annotation>$\\mathsf {VTC^0}$</annotation>\n </semantics></math> are recursively saturated in a rich language with predicates expressing the integers, rationals, and logarithmically bounded numbers. Combined with our previous results on the construction of the real exponential function on completions of models of <math>\n <semantics>\n <msup>\n <mi>VTC</mi>\n <mn>0</mn>\n </msup>\n <annotation>$\\mathsf {VTC^0}$</annotation>\n </semantics></math>, we show that every countable model of <math>\n <semantics>\n <msup>\n <mi>VTC</mi>\n <mn>0</mn>\n </msup>\n <annotation>$\\mathsf {VTC^0}$</annotation>\n </semantics></math> is an exponential integer part of a real-closed exponential field.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300001","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We prove that (additive) ordered group reducts of nonstandard models of the bounded arithmetical theory VTC 0 $\mathsf {VTC^0}$ are recursively saturated in a rich language with predicates expressing the integers, rationals, and logarithmically bounded numbers. Combined with our previous results on the construction of the real exponential function on completions of models of  VTC 0 $\mathsf {VTC^0}$ , we show that every countable model of  VTC 0 $\mathsf {VTC^0}$ is an exponential integer part of a real-closed exponential field.

Abstract Image

分享
查看原文
VTC 0$\mathsf{VTC^0}$作为指数整数部分的模型
我们证明了有界算术理论VTC0$\mathsf{VTC^0}$的非标准模型的(加性)有序群约简在一种丰富的语言中递归饱和,该语言中谓词表示整数、有理数和对数有界数。结合我们以前关于VTC0$\mathsf{VTC^0}$模型完备的实指数函数构造的结果,我们证明了VTC0$\mathsf{VTC^0}$的每个可数模型都是实闭指数域的指数整数部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信