Approximate isomorphism of metric structures

Pub Date : 2023-09-05 DOI:10.1002/malq.202200076
James E. Hanson
{"title":"Approximate isomorphism of metric structures","authors":"James E. Hanson","doi":"10.1002/malq.202200076","DOIUrl":null,"url":null,"abstract":"<p>We give a formalism for approximate isomorphism in continuous logic simultaneously generalizing those of two papers by Ben Yaacov [2] and by Ben Yaacov, Doucha, Nies, and Tsankov [6], which are largely incompatible. With this we explicitly exhibit Scott sentences for the perturbation systems of the former paper, such as the Banach-Mazur distance and the Lipschitz distance between metric spaces. Our formalism is simultaneously characterized syntactically by a mild generalization of perturbation systems and semantically by certain elementary classes of two-sorted structures that witness approximate isomorphism. As an application, we show that the theory of any <math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math>-tree or ultrametric space of finite radius is stable, improving a result of Carlisle and Henson [8].</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202200076","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We give a formalism for approximate isomorphism in continuous logic simultaneously generalizing those of two papers by Ben Yaacov [2] and by Ben Yaacov, Doucha, Nies, and Tsankov [6], which are largely incompatible. With this we explicitly exhibit Scott sentences for the perturbation systems of the former paper, such as the Banach-Mazur distance and the Lipschitz distance between metric spaces. Our formalism is simultaneously characterized syntactically by a mild generalization of perturbation systems and semantically by certain elementary classes of two-sorted structures that witness approximate isomorphism. As an application, we show that the theory of any R $\mathbb {R}$ -tree or ultrametric space of finite radius is stable, improving a result of Carlisle and Henson [8].

分享
查看原文
度量结构的近似同构
我们同时推广了Ben Yaacov[2]和Ben Yaacov、Doucha、Nies和Tsankov[6]的两篇论文的结果,给出了连续逻辑中近似同构的一个形式。在此基础上,我们明确地展示了前一篇论文中摄动系统的Scott句,如度量空间之间的Banach-Mazur距离和Lipschitz距离。我们的形式主义在句法上同时以微扰系统的温和泛化为特征,在语义上以两排序结构的某些基本类为特征,这些基本类见证了近似同构。作为一个应用,我们证明了任意R $\mathbb {R}$ -树或有限半径超测度空间的理论是稳定的,改进了Carlisle和Henson[8]的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信