Approximate isomorphism of metric structures

IF 0.4 4区 数学 Q4 LOGIC
James E. Hanson
{"title":"Approximate isomorphism of metric structures","authors":"James E. Hanson","doi":"10.1002/malq.202200076","DOIUrl":null,"url":null,"abstract":"<p>We give a formalism for approximate isomorphism in continuous logic simultaneously generalizing those of two papers by Ben Yaacov [2] and by Ben Yaacov, Doucha, Nies, and Tsankov [6], which are largely incompatible. With this we explicitly exhibit Scott sentences for the perturbation systems of the former paper, such as the Banach-Mazur distance and the Lipschitz distance between metric spaces. Our formalism is simultaneously characterized syntactically by a mild generalization of perturbation systems and semantically by certain elementary classes of two-sorted structures that witness approximate isomorphism. As an application, we show that the theory of any <math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math>-tree or ultrametric space of finite radius is stable, improving a result of Carlisle and Henson [8].</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"69 4","pages":"482-507"},"PeriodicalIF":0.4000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202200076","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200076","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 3

Abstract

We give a formalism for approximate isomorphism in continuous logic simultaneously generalizing those of two papers by Ben Yaacov [2] and by Ben Yaacov, Doucha, Nies, and Tsankov [6], which are largely incompatible. With this we explicitly exhibit Scott sentences for the perturbation systems of the former paper, such as the Banach-Mazur distance and the Lipschitz distance between metric spaces. Our formalism is simultaneously characterized syntactically by a mild generalization of perturbation systems and semantically by certain elementary classes of two-sorted structures that witness approximate isomorphism. As an application, we show that the theory of any R $\mathbb {R}$ -tree or ultrametric space of finite radius is stable, improving a result of Carlisle and Henson [8].

度量结构的近似同构
我们同时推广了Ben Yaacov[2]和Ben Yaacov、Doucha、Nies和Tsankov[6]的两篇论文的结果,给出了连续逻辑中近似同构的一个形式。在此基础上,我们明确地展示了前一篇论文中摄动系统的Scott句,如度量空间之间的Banach-Mazur距离和Lipschitz距离。我们的形式主义在句法上同时以微扰系统的温和泛化为特征,在语义上以两排序结构的某些基本类为特征,这些基本类见证了近似同构。作为一个应用,我们证明了任意R $\mathbb {R}$ -树或有限半径超测度空间的理论是稳定的,改进了Carlisle和Henson[8]的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信