A property of forcing notions and preservation of cardinal invariants

IF 0.4 4区 数学 Q4 LOGIC
Yushiro Aoki
{"title":"A property of forcing notions and preservation of cardinal invariants","authors":"Yushiro Aoki","doi":"10.1002/malq.202300013","DOIUrl":null,"url":null,"abstract":"<p>We define a property of forcing notions and show that there exists a model of its forcing axiom and the negation of the continuum hypothesis in which the Cichoń-Blass diagram of cardinal invariants is the same as in the Cohen model. As a corollary, its forcing axiom and the forcing axiom for <span></span><math>\n <semantics>\n <mi>σ</mi>\n <annotation>$\\sigma$</annotation>\n </semantics></math>-centered forcing notions are independent of each other.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 1","pages":"73-78"},"PeriodicalIF":0.4000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300013","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

We define a property of forcing notions and show that there exists a model of its forcing axiom and the negation of the continuum hypothesis in which the Cichoń-Blass diagram of cardinal invariants is the same as in the Cohen model. As a corollary, its forcing axiom and the forcing axiom for σ $\sigma$ -centered forcing notions are independent of each other.

强迫概念的性质和基本不变量的保存
我们定义了强迫概念的一个性质,并证明存在一个强迫公理的模型和连续统假设的否定,其中Cichoń-Blass基本不变量图与Cohen模型中相同。作为一个推论,它的强迫公理与σ中心强迫概念的强迫公理是相互独立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信