具有无限序列的无限逻辑:句法研究

Pub Date : 2023-12-04 DOI:10.1002/malq.202300011
Matteo Tesi
{"title":"具有无限序列的无限逻辑:句法研究","authors":"Matteo Tesi","doi":"10.1002/malq.202300011","DOIUrl":null,"url":null,"abstract":"<p>The present paper deals with a purely syntactic analysis of infinitary logic with infinite sequents. In particular, we discuss sequent calculi for classical and intuitionistic infinitary logic with good structural properties based on sequents possibly containing infinitely many formulas. A cut admissibility proof is proposed which employs a new strategy and a new inductive parameter. We conclude the paper by discussing related issues and possible themes for future research.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitary logic with infinite sequents: syntactic investigations\",\"authors\":\"Matteo Tesi\",\"doi\":\"10.1002/malq.202300011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present paper deals with a purely syntactic analysis of infinitary logic with infinite sequents. In particular, we discuss sequent calculi for classical and intuitionistic infinitary logic with good structural properties based on sequents possibly containing infinitely many formulas. A cut admissibility proof is proposed which employs a new strategy and a new inductive parameter. We conclude the paper by discussing related issues and possible themes for future research.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了具有无穷序列的无穷逻辑的纯句法分析。特别地,我们讨论了基于可能包含无限多个公式的序列的具有良好结构性质的经典和直觉无穷逻辑的序列演算。提出了一种采用新策略和新归纳参数的割容许性证明方法。最后,我们讨论了相关问题和未来可能的研究主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Infinitary logic with infinite sequents: syntactic investigations

The present paper deals with a purely syntactic analysis of infinitary logic with infinite sequents. In particular, we discuss sequent calculi for classical and intuitionistic infinitary logic with good structural properties based on sequents possibly containing infinitely many formulas. A cut admissibility proof is proposed which employs a new strategy and a new inductive parameter. We conclude the paper by discussing related issues and possible themes for future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信