{"title":"On \n \n \n b\n \n Q\n 1\n \n \n $bQ_1$\n -degrees of c.e. sets","authors":"Roland Omanadze, Irakli Chitaia","doi":"10.1002/malq.202300033","DOIUrl":null,"url":null,"abstract":"<p>Using properties of simple sets we study <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mi>b</mi>\n <mi>Q</mi>\n </mrow>\n <mn>1</mn>\n </msub>\n <annotation>${bQ}_1$</annotation>\n </semantics></math>-degrees of c.e. sets. In particular, we prove: (1) If <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> are c.e. sets, <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> is a simple set and <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <msub>\n <mo>≤</mo>\n <msub>\n <mrow>\n <mi>b</mi>\n <mi>Q</mi>\n </mrow>\n <mn>1</mn>\n </msub>\n </msub>\n <mi>B</mi>\n </mrow>\n <annotation>$A\\le _{{bQ}_{1}}B$</annotation>\n </semantics></math>, then there exists a simple set <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$C$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msub>\n <mo>≤</mo>\n <mn>1</mn>\n </msub>\n <mi>A</mi>\n </mrow>\n <annotation>$C\\le _1 A$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msub>\n <mo>≤</mo>\n <mn>1</mn>\n </msub>\n <mi>B</mi>\n </mrow>\n <annotation>$C\\le _1 B$</annotation>\n </semantics></math>. (2) the c.e. <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mi>b</mi>\n <mi>Q</mi>\n </mrow>\n <mn>1</mn>\n </msub>\n <annotation>${bQ}_1$</annotation>\n </semantics></math>-degrees (<span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mi>b</mi>\n <mi>Q</mi>\n </mrow>\n <mn>1</mn>\n </msub>\n <annotation>${bQ}_1$</annotation>\n </semantics></math>-degrees) do not form an upper semilattice. (3) The c.e. <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mi>b</mi>\n <mi>Q</mi>\n </mrow>\n <mn>1</mn>\n </msub>\n <annotation>${bQ}_1$</annotation>\n </semantics></math>-degrees are not dense, but are upwards dense. (4) The <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mi>b</mi>\n <mi>Q</mi>\n </mrow>\n <mn>1</mn>\n </msub>\n <annotation>${bQ}_1$</annotation>\n </semantics></math>-degrees are not dense.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Using properties of simple sets we study -degrees of c.e. sets. In particular, we prove: (1) If and are c.e. sets, is a simple set and , then there exists a simple set such that and . (2) the c.e. -degrees (-degrees) do not form an upper semilattice. (3) The c.e. -degrees are not dense, but are upwards dense. (4) The -degrees are not dense.