{"title":"On \n \n \n b\n \n Q\n 1\n \n \n $bQ_1$\n -degrees of c.e. sets","authors":"Roland Omanadze, Irakli Chitaia","doi":"10.1002/malq.202300033","DOIUrl":null,"url":null,"abstract":"<p>Using properties of simple sets we study <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mi>b</mi>\n <mi>Q</mi>\n </mrow>\n <mn>1</mn>\n </msub>\n <annotation>${bQ}_1$</annotation>\n </semantics></math>-degrees of c.e. sets. In particular, we prove: (1) If <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> are c.e. sets, <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> is a simple set and <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <msub>\n <mo>≤</mo>\n <msub>\n <mrow>\n <mi>b</mi>\n <mi>Q</mi>\n </mrow>\n <mn>1</mn>\n </msub>\n </msub>\n <mi>B</mi>\n </mrow>\n <annotation>$A\\le _{{bQ}_{1}}B$</annotation>\n </semantics></math>, then there exists a simple set <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$C$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msub>\n <mo>≤</mo>\n <mn>1</mn>\n </msub>\n <mi>A</mi>\n </mrow>\n <annotation>$C\\le _1 A$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msub>\n <mo>≤</mo>\n <mn>1</mn>\n </msub>\n <mi>B</mi>\n </mrow>\n <annotation>$C\\le _1 B$</annotation>\n </semantics></math>. (2) the c.e. <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mi>b</mi>\n <mi>Q</mi>\n </mrow>\n <mn>1</mn>\n </msub>\n <annotation>${bQ}_1$</annotation>\n </semantics></math>-degrees (<span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mi>b</mi>\n <mi>Q</mi>\n </mrow>\n <mn>1</mn>\n </msub>\n <annotation>${bQ}_1$</annotation>\n </semantics></math>-degrees) do not form an upper semilattice. (3) The c.e. <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mi>b</mi>\n <mi>Q</mi>\n </mrow>\n <mn>1</mn>\n </msub>\n <annotation>${bQ}_1$</annotation>\n </semantics></math>-degrees are not dense, but are upwards dense. (4) The <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mi>b</mi>\n <mi>Q</mi>\n </mrow>\n <mn>1</mn>\n </msub>\n <annotation>${bQ}_1$</annotation>\n </semantics></math>-degrees are not dense.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 1","pages":"64-72"},"PeriodicalIF":0.4000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300033","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
Abstract
Using properties of simple sets we study -degrees of c.e. sets. In particular, we prove: (1) If and are c.e. sets, is a simple set and , then there exists a simple set such that and . (2) the c.e. -degrees (-degrees) do not form an upper semilattice. (3) The c.e. -degrees are not dense, but are upwards dense. (4) The -degrees are not dense.
期刊介绍:
Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.