Infinite Wordle and the mastermind numbers

Pub Date : 2023-09-13 DOI:10.1002/malq.202200049
Joel David Hamkins
{"title":"Infinite Wordle and the mastermind numbers","authors":"Joel David Hamkins","doi":"10.1002/malq.202200049","DOIUrl":null,"url":null,"abstract":"<p>I consider the natural infinitary variations of the games Wordle and Mastermind, as well as their game-theoretic variations Absurdle and Madstermind, considering these games with infinitely long words and infinite color sequences and allowing transfinite game play. For each game, a secret codeword is hidden, which the codebreaker attempts to discover by making a series of guesses and receiving feedback as to their accuracy. In Wordle with words of any size from a finite alphabet of <i>n</i> letters, including infinite words or even uncountable words, the codebreaker can nevertheless always win in <i>n</i> steps. Meanwhile, the <i>mastermind number</i> <math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathbbm {m}$</annotation>\n </semantics></math>, defined as the smallest winning set of guesses in infinite Mastermind for sequences of length ω over a countable set of colors without duplication, is uncountable, but the exact value turns out to be independent of <math>\n <semantics>\n <mi>ZFC</mi>\n <annotation>$\\mathsf {ZFC}$</annotation>\n </semantics></math>, for it is provably equal to the eventually different number <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>(</mo>\n <msup>\n <mo>≠</mo>\n <mo>∗</mo>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathfrak {d}({\\ne ^*})$</annotation>\n </semantics></math>, which is the same as the covering number of the meager ideal <math>\n <semantics>\n <mrow>\n <mrow>\n <mtext>cov</mtext>\n </mrow>\n <mo>(</mo>\n <mi>M</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{\\mbox{cov}}(\\mathcal {M})$</annotation>\n </semantics></math>. I thus place all the various mastermind numbers, defined for the natural variations of the game, into the hierarchy of cardinal characteristics of the continuum.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202200049","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

I consider the natural infinitary variations of the games Wordle and Mastermind, as well as their game-theoretic variations Absurdle and Madstermind, considering these games with infinitely long words and infinite color sequences and allowing transfinite game play. For each game, a secret codeword is hidden, which the codebreaker attempts to discover by making a series of guesses and receiving feedback as to their accuracy. In Wordle with words of any size from a finite alphabet of n letters, including infinite words or even uncountable words, the codebreaker can nevertheless always win in n steps. Meanwhile, the mastermind number m $\mathbbm {m}$ , defined as the smallest winning set of guesses in infinite Mastermind for sequences of length ω over a countable set of colors without duplication, is uncountable, but the exact value turns out to be independent of ZFC $\mathsf {ZFC}$ , for it is provably equal to the eventually different number d ( ) $\mathfrak {d}({\ne ^*})$ , which is the same as the covering number of the meager ideal cov ( M ) $\operatorname{\mbox{cov}}(\mathcal {M})$ . I thus place all the various mastermind numbers, defined for the natural variations of the game, into the hierarchy of cardinal characteristics of the continuum.

Abstract Image

分享
查看原文
无限世界和主谋数字
我考虑了游戏《world》和《Mastermind》的自然无限变体,以及它们的游戏理论变体《荒诞》和《Madstermind》,考虑到这些游戏具有无限长的单词和无限的颜色序列,并允许无限的游戏玩法。对于每个游戏,都隐藏着一个秘密密码字,密码破译者试图通过进行一系列猜测并获得关于其准确性的反馈来发现它。在由n个字母组成的有限字母表中,任何大小的单词,包括无限的单词甚至不可数的单词,密码破译者总是可以在n步内获胜。同时,策划数m $\mathbbm {m}$,定义为无限策划中长度为ω的序列在无重复的可计数颜色集合上的最小获胜集,是不可数的,但确切的值证明与ZFC $\mathbbm {ZFC}$无关。因为它可证明等于最终不同的数d(≠∗)$ \mathfrak {d}({\ne ^*})$,这与微理想cov (M)$ \operatorname{\mbox{cov}}(\mathcal {M})$的覆盖数相同。因此,我将所有根据游戏的自然变化而定义的各种策划数字放入连续体的基本特征层次中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信