{"title":"Infinitary logic with infinite sequents: syntactic investigations","authors":"Matteo Tesi","doi":"10.1002/malq.202300011","DOIUrl":null,"url":null,"abstract":"<p>The present paper deals with a purely syntactic analysis of infinitary logic with infinite sequents. In particular, we discuss sequent calculi for classical and intuitionistic infinitary logic with good structural properties based on sequents possibly containing infinitely many formulas. A cut admissibility proof is proposed which employs a new strategy and a new inductive parameter. We conclude the paper by discussing related issues and possible themes for future research.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 1","pages":"79-98"},"PeriodicalIF":0.4000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300011","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
Abstract
The present paper deals with a purely syntactic analysis of infinitary logic with infinite sequents. In particular, we discuss sequent calculi for classical and intuitionistic infinitary logic with good structural properties based on sequents possibly containing infinitely many formulas. A cut admissibility proof is proposed which employs a new strategy and a new inductive parameter. We conclude the paper by discussing related issues and possible themes for future research.
期刊介绍:
Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.