具有单项式群的t凸域的二分类

IF 0.4 4区 数学 Q4 LOGIC
Elliot Kaplan, Christoph Kesting
{"title":"具有单项式群的t凸域的二分类","authors":"Elliot Kaplan,&nbsp;Christoph Kesting","doi":"10.1002/malq.202300017","DOIUrl":null,"url":null,"abstract":"<p>We prove a dichotomy for o-minimal fields <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathcal {R}$</annotation>\n </semantics></math>, expanded by a <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math>-convex valuation ring (where <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> is the theory of <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathcal {R}$</annotation>\n </semantics></math>) and a compatible monomial group. We show that if <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> is power bounded, then this expansion of <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathcal {R}$</annotation>\n </semantics></math> is model complete (assuming that <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> is), it has a distal theory, and the definable sets are geometrically tame. On the other hand, if <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathcal {R}$</annotation>\n </semantics></math> defines an exponential function, then the natural numbers are externally definable in our expansion, precluding any sort of model-theoretic tameness.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 1","pages":"99-110"},"PeriodicalIF":0.4000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300017","citationCount":"0","resultStr":"{\"title\":\"A dichotomy for \\n \\n T\\n $T$\\n -convex fields with a monomial group\",\"authors\":\"Elliot Kaplan,&nbsp;Christoph Kesting\",\"doi\":\"10.1002/malq.202300017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove a dichotomy for o-minimal fields <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathcal {R}$</annotation>\\n </semantics></math>, expanded by a <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$T$</annotation>\\n </semantics></math>-convex valuation ring (where <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$T$</annotation>\\n </semantics></math> is the theory of <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathcal {R}$</annotation>\\n </semantics></math>) and a compatible monomial group. We show that if <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$T$</annotation>\\n </semantics></math> is power bounded, then this expansion of <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathcal {R}$</annotation>\\n </semantics></math> is model complete (assuming that <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$T$</annotation>\\n </semantics></math> is), it has a distal theory, and the definable sets are geometrically tame. On the other hand, if <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathcal {R}$</annotation>\\n </semantics></math> defines an exponential function, then the natural numbers are externally definable in our expansion, precluding any sort of model-theoretic tameness.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"70 1\",\"pages\":\"99-110\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300017\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300017\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300017","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了0 -极小域R$\mathcal {R}$的二分类,该二分类由一个T-凸值环(其中T是R$\mathcal {R}$的理论)和一个相容单群展开。我们证明了如果T是幂有界的,那么R$\mathcal {R}$的展开式是模型完备的(假设T是),它有一个远端理论,并且可定义集是几何上驯服的。另一方面,如果R$\mathcal {R}$定义了一个指数函数,那么在我们的展开中自然数是外部可定义的,排除了任何类型的模型理论驯服性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A dichotomy for T $T$ -convex fields with a monomial group

We prove a dichotomy for o-minimal fields R $\mathcal {R}$ , expanded by a T $T$ -convex valuation ring (where T $T$ is the theory of R $\mathcal {R}$ ) and a compatible monomial group. We show that if T $T$ is power bounded, then this expansion of R $\mathcal {R}$ is model complete (assuming that T $T$ is), it has a distal theory, and the definable sets are geometrically tame. On the other hand, if R $\mathcal {R}$ defines an exponential function, then the natural numbers are externally definable in our expansion, precluding any sort of model-theoretic tameness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信