具有单项式群的t凸域的二分类

Pub Date : 2023-11-21 DOI:10.1002/malq.202300017
Elliot Kaplan, Christoph Kesting
{"title":"具有单项式群的t凸域的二分类","authors":"Elliot Kaplan,&nbsp;Christoph Kesting","doi":"10.1002/malq.202300017","DOIUrl":null,"url":null,"abstract":"<p>We prove a dichotomy for o-minimal fields <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathcal {R}$</annotation>\n </semantics></math>, expanded by a <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math>-convex valuation ring (where <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> is the theory of <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathcal {R}$</annotation>\n </semantics></math>) and a compatible monomial group. We show that if <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> is power bounded, then this expansion of <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathcal {R}$</annotation>\n </semantics></math> is model complete (assuming that <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> is), it has a distal theory, and the definable sets are geometrically tame. On the other hand, if <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathcal {R}$</annotation>\n </semantics></math> defines an exponential function, then the natural numbers are externally definable in our expansion, precluding any sort of model-theoretic tameness.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300017","citationCount":"0","resultStr":"{\"title\":\"A dichotomy for \\n \\n T\\n $T$\\n -convex fields with a monomial group\",\"authors\":\"Elliot Kaplan,&nbsp;Christoph Kesting\",\"doi\":\"10.1002/malq.202300017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove a dichotomy for o-minimal fields <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathcal {R}$</annotation>\\n </semantics></math>, expanded by a <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$T$</annotation>\\n </semantics></math>-convex valuation ring (where <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$T$</annotation>\\n </semantics></math> is the theory of <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathcal {R}$</annotation>\\n </semantics></math>) and a compatible monomial group. We show that if <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$T$</annotation>\\n </semantics></math> is power bounded, then this expansion of <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathcal {R}$</annotation>\\n </semantics></math> is model complete (assuming that <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$T$</annotation>\\n </semantics></math> is), it has a distal theory, and the definable sets are geometrically tame. On the other hand, if <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathcal {R}$</annotation>\\n </semantics></math> defines an exponential function, then the natural numbers are externally definable in our expansion, precluding any sort of model-theoretic tameness.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300017\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了0 -极小域R$\mathcal {R}$的二分类,该二分类由一个T-凸值环(其中T是R$\mathcal {R}$的理论)和一个相容单群展开。我们证明了如果T是幂有界的,那么R$\mathcal {R}$的展开式是模型完备的(假设T是),它有一个远端理论,并且可定义集是几何上驯服的。另一方面,如果R$\mathcal {R}$定义了一个指数函数,那么在我们的展开中自然数是外部可定义的,排除了任何类型的模型理论驯服性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A dichotomy for T $T$ -convex fields with a monomial group

We prove a dichotomy for o-minimal fields R $\mathcal {R}$ , expanded by a T $T$ -convex valuation ring (where T $T$ is the theory of R $\mathcal {R}$ ) and a compatible monomial group. We show that if T $T$ is power bounded, then this expansion of R $\mathcal {R}$ is model complete (assuming that T $T$ is), it has a distal theory, and the definable sets are geometrically tame. On the other hand, if R $\mathcal {R}$ defines an exponential function, then the natural numbers are externally definable in our expansion, precluding any sort of model-theoretic tameness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信