Graphs and Combinatorics最新文献

筛选
英文 中文
A Matrix for Counting Paths in Acyclic Colored Digraphs 无环彩色图中的路径计数矩阵
IF 0.7 4区 数学
Graphs and Combinatorics Pub Date : 2024-04-08 DOI: 10.1007/s00373-024-02785-6
Sudip Bera
{"title":"A Matrix for Counting Paths in Acyclic Colored Digraphs","authors":"Sudip Bera","doi":"10.1007/s00373-024-02785-6","DOIUrl":"https://doi.org/10.1007/s00373-024-02785-6","url":null,"abstract":"<p>In this paper, we generalize a theorem of R. P. Stanley regarding the enumeration of paths in acyclic digraphs.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140578881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The primality graph of critical 3-hypergraphs 临界 3-hypergraph 的基元图
IF 0.7 4区 数学
Graphs and Combinatorics Pub Date : 2024-04-06 DOI: 10.1007/s00373-024-02772-x
{"title":"The primality graph of critical 3-hypergraphs","authors":"","doi":"10.1007/s00373-024-02772-x","DOIUrl":"https://doi.org/10.1007/s00373-024-02772-x","url":null,"abstract":"<h3>Abstract</h3> <p>Given a 3-hypergraph <em>H</em>, a subset <em>M</em> of <em>V</em>(<em>H</em>) is a module of <em>H</em> if for each <span> <span>(ein E(H))</span> </span> such that <span> <span>(ecap Mne emptyset )</span> </span> and <span> <span>(e{setminus } Mne emptyset )</span> </span>, there exists <span> <span>(min M)</span> </span> such that <span> <span>(ecap M={m})</span> </span> and for every <span> <span>(nin M)</span> </span>, we have <span> <span>((e{setminus }{m})cup {n}in E(H))</span> </span>. For example, <span> <span>(emptyset )</span> </span>, <em>V</em>(<em>H</em>) and <span> <span>({v})</span> </span>, where <span> <span>(vin V(H))</span> </span>, are modules of <em>H</em>, called trivial. A 3-hypergraph is prime if all its modules are trivial. Furthermore, a prime 3-hypergraph is critical if all its induced subhypergraphs, obtained by removing one vertex, are not prime. Lastly, we associate with a prime 3-hypergraph its primality graph the edges of which are the unordered pairs of vertices whose removal provides a prime induced subhypergraph. We characterize the critical 3-hypergraphs together with their primality graph.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140578724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Edge-Erdős–Pósa Property of Ladders 关于梯子的边缘-厄尔多斯-波萨特性
IF 0.7 4区 数学
Graphs and Combinatorics Pub Date : 2024-04-05 DOI: 10.1007/s00373-024-02765-w
Raphael Steck, Arthur Ulmer
{"title":"On the Edge-Erdős–Pósa Property of Ladders","authors":"Raphael Steck, Arthur Ulmer","doi":"10.1007/s00373-024-02765-w","DOIUrl":"https://doi.org/10.1007/s00373-024-02765-w","url":null,"abstract":"<p>We prove that the ladder with 3 rungs and the house graph have the edge-Erdős–Pósa property, while ladders with 14 rungs or more have not. Additionally, we prove that the latter bound is optimal in the sense that the only known counterexample graph does not permit a better result.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140578882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Planar Graphs with the Maximum Number of Induced 4-Cycles or 5-Cycles 具有最多诱导 4 周期或 5 周期的平面图形
IF 0.7 4区 数学
Graphs and Combinatorics Pub Date : 2024-04-05 DOI: 10.1007/s00373-024-02773-w
Michael Savery
{"title":"Planar Graphs with the Maximum Number of Induced 4-Cycles or 5-Cycles","authors":"Michael Savery","doi":"10.1007/s00373-024-02773-w","DOIUrl":"https://doi.org/10.1007/s00373-024-02773-w","url":null,"abstract":"<p>For large <i>n</i> we determine exactly the maximum numbers of induced <span>(C_4)</span> and <span>(C_5)</span> subgraphs that a planar graph on <i>n</i> vertices can contain. We show that <span>(K_{2,n-2})</span> uniquely achieves this maximum in the <span>(C_4)</span> case, and we identify the graphs which achieve the maximum in the <span>(C_5)</span> case. This extends work in a paper by Hakimi and Schmeichel and a paper by Ghosh, Győri, Janzer, Paulos, Salia, and Zamora which together determine both maxima asymptotically.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140578837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Walk Domination and HHD-Free Graphs 步行支配和无 HHD 图形
IF 0.7 4区 数学
Graphs and Combinatorics Pub Date : 2024-04-05 DOI: 10.1007/s00373-024-02771-y
Silvia B. Tondato
{"title":"Walk Domination and HHD-Free Graphs","authors":"Silvia B. Tondato","doi":"10.1007/s00373-024-02771-y","DOIUrl":"https://doi.org/10.1007/s00373-024-02771-y","url":null,"abstract":"<p>HHD-free is the class of graphs which contain no house, hole, or domino as induced subgraph. It is known that HHD-free graphs can be characterized via LexBFS-ordering and via <span>(m^3)</span>-convexity. In this paper we present new characterizations of HHD-free via domination of paths and walks. To achieve this, in particular we concentrate our attention on <span>(m_3)</span> path, i.e, an induced path of length at least 3 between two non-adjacent vertices in a graph <i>G</i>. We show that the domination between induced paths, paths and walks versus <span>(m_3)</span> paths, gives rise to characterization of HHD-free. We also characterize the class of graphs in which every <span>(m_3)</span> path dominates every path, induced path, walk, and <span>(m_3)</span> path, respectively.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140578553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using Euler’s Formula to Find the Lower Bound of the Page Number 使用欧拉公式计算页码下限
IF 0.7 4区 数学
Graphs and Combinatorics Pub Date : 2024-04-03 DOI: 10.1007/s00373-024-02775-8
Bin Zhao, Peng Li, Jixiang Meng, Yuepeng Zhang
{"title":"Using Euler’s Formula to Find the Lower Bound of the Page Number","authors":"Bin Zhao, Peng Li, Jixiang Meng, Yuepeng Zhang","doi":"10.1007/s00373-024-02775-8","DOIUrl":"https://doi.org/10.1007/s00373-024-02775-8","url":null,"abstract":"<p>The concept of book embedding, originating in computer science, has found extensive applications in various problem domains. A book embedding of a graph <i>G</i> involves arranging the vertices of <i>G</i> in an order along a line and assigning the edges to one or more half-planes. The page number of a graph is the smallest possible number of half-planes for any book embedding of the graph. Determining the page number is a key aspect of book embedding and carries significant importance. This paper aims to investigate the non-trivial lower bound of the page number for both a graph <i>G</i> and a random graph <span>(Gin mathcal {G}(n,p))</span> by incorporating two seemingly unrelated concepts: edge-arboricity and Euler’s Formula. Our analysis reveals that for a graph <i>G</i>, which is not a path, <span>(pn(G)ge lceil frac{1}{3} a_1(G)rceil )</span>, where <span>(a_1(G))</span> denotes the edge-arboricity of <i>G</i>, and for an outerplanar graph, the lower bound is optimal. For <span>(Gin mathcal {G}(n,p))</span>, <span>(pn(G)ge lceil frac{1}{6}np(1-o(1))rceil )</span> with high probability, as long as <span>(frac{c}{n}le ple frac{root 2 of {3(n-1)}}{nlog {n}})</span>.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140578832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Path Saturation Game on Six Vertices 六顶点上的路径饱和博弈
IF 0.7 4区 数学
Graphs and Combinatorics Pub Date : 2024-04-03 DOI: 10.1007/s00373-024-02767-8
Paul Balister, Ali Dogan
{"title":"Path Saturation Game on Six Vertices","authors":"Paul Balister, Ali Dogan","doi":"10.1007/s00373-024-02767-8","DOIUrl":"https://doi.org/10.1007/s00373-024-02767-8","url":null,"abstract":"<p>Given a family <span>(mathcal {F})</span> of graphs, we say that a graph <i>G</i> is <span>(mathcal {F})</span>-saturated if <i>G</i> does not contain any member of <span>(mathcal {F})</span>, but for any edge <span>(ein E(overline{G}))</span> the graph <span>(G+e)</span> does contain a member of <span>(mathcal {F})</span>. The <span>(mathcal {F})</span>-<i>saturation game</i> is played by two players starting with an empty graph and adding an edge on their turn without making a member of <span>(mathcal {F})</span>. The game ends when the graph is <span>(mathcal {F})</span>-saturated. One of the players wants to maximize the number edges in the final graph, while the other wants to minimize it. The <i>game saturation number</i> is the number of edges in the final graph given the optimal play by both players. In the present paper we study <span>(mathcal {F})</span>-saturation game when <span>(mathcal {F}={P_6})</span> consists of the single path on 6 vertices.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140578884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some Results on the Rainbow Vertex-Disconnection Colorings of Graphs 关于图的彩虹顶点-断开连接着色的一些结果
IF 0.7 4区 数学
Graphs and Combinatorics Pub Date : 2024-04-02 DOI: 10.1007/s00373-024-02762-z
Yindi Weng
{"title":"Some Results on the Rainbow Vertex-Disconnection Colorings of Graphs","authors":"Yindi Weng","doi":"10.1007/s00373-024-02762-z","DOIUrl":"https://doi.org/10.1007/s00373-024-02762-z","url":null,"abstract":"<p>Let <i>G</i> be a nontrivial connected and vertex-colored graph. A vertex subset <i>X</i> is called <i>rainbow</i> if any two vertices in <i>X</i> have distinct colors. The graph <i>G</i> is called <i>rainbow vertex-disconnected</i> if for any two vertices <i>x</i> and <i>y</i> of <i>G</i>, there exists a vertex subset <i>S</i> such that when <i>x</i> and <i>y</i> are nonadjacent, <i>S</i> is rainbow and <i>x</i> and <i>y</i> belong to different components of <span>(G-S)</span>; whereas when <i>x</i> and <i>y</i> are adjacent, <span>(S+x)</span> or <span>(S+y)</span> is rainbow and <i>x</i> and <i>y</i> belong to different components of <span>((G-xy)-S)</span>. For a connected graph <i>G</i>, the <i>rainbow vertex-disconnection number</i> of <i>G</i>, <i>rvd</i>(<i>G</i>), is the minimum number of colors that are needed to make <i>G</i> rainbow vertex-disconnected. In this paper, we prove for any <span>(K_4)</span>-minor free graph, <span>(rvd(G)le Delta (G))</span> and the bound is sharp. We show it is <i>NP</i>-complete to determine the rainbow vertex-disconnection numbers for bipartite graphs and split graphs. Moreover, we show for every <span>(epsilon &gt;0)</span>, it is impossible to efficiently approximate the rainbow vertex-disconnection number of any bipartite graph and split graph within a factor of <span>(n^{frac{1}{3}-epsilon })</span> unless <span>(ZPP=NP)</span>.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140578558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Removable Edges in Claw-Free Bricks 无爪砖的可拆卸边缘
IF 0.7 4区 数学
Graphs and Combinatorics Pub Date : 2024-04-02 DOI: 10.1007/s00373-024-02769-6
{"title":"Removable Edges in Claw-Free Bricks","authors":"","doi":"10.1007/s00373-024-02769-6","DOIUrl":"https://doi.org/10.1007/s00373-024-02769-6","url":null,"abstract":"<h3>Abstract</h3> <p>An edge <em>e</em> in a matching covered graph <em>G</em> is <em>removable</em> if <span> <span>(G-e)</span> </span> is matching covered. Removable edges were introduced by Lovász and Plummer in connection with ear decompositions of matching covered graphs. A <em>brick</em> is a non-bipartite matching covered graph without non-trivial tight cuts. The importance of bricks stems from the fact that they are building blocks of matching covered graphs. Lovász proved that every brick other than <span> <span>(K_4)</span> </span> and <span> <span>(overline{C_6})</span> </span> has a removable edge. It is known that every 3-connected claw-free graph with even number of vertices is a brick. By characterizing the structure of adjacent non-removable edges, we show that every claw-free brick <em>G</em> with more than 6 vertices has at least 5|<em>V</em>(<em>G</em>)|/8 removable edges.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140578616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strongly Regular Graphs from Pseudocyclic Association Schemes 来自伪环关联方案的强正则图
IF 0.7 4区 数学
Graphs and Combinatorics Pub Date : 2024-03-26 DOI: 10.1007/s00373-024-02764-x
Koji Momihara, Sho Suda
{"title":"Strongly Regular Graphs from Pseudocyclic Association Schemes","authors":"Koji Momihara, Sho Suda","doi":"10.1007/s00373-024-02764-x","DOIUrl":"https://doi.org/10.1007/s00373-024-02764-x","url":null,"abstract":"<p>In this paper, we give a construction of strongly regular graphs from pseudocyclic association schemes, which is a common generalization of two constructions given by Fujisaki (2004). Furthermore, we prove that the pseudocyclic association scheme arising from the action of PGL(2, <i>q</i>) to the set of exterior lines in PG(2, <i>q</i>), called the elliptic scheme, under the assumption that <span>(q=2^m)</span> with <i>m</i> an odd prime satisfies the condition of our new construction. As a consequence, we obtain a new infinite family of strongly regular graphs of Latin square type with non-prime-power number of vertices.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140297881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信