Strongly Regular Graphs from Pseudocyclic Association Schemes

Pub Date : 2024-03-26 DOI:10.1007/s00373-024-02764-x
Koji Momihara, Sho Suda
{"title":"Strongly Regular Graphs from Pseudocyclic Association Schemes","authors":"Koji Momihara, Sho Suda","doi":"10.1007/s00373-024-02764-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we give a construction of strongly regular graphs from pseudocyclic association schemes, which is a common generalization of two constructions given by Fujisaki (2004). Furthermore, we prove that the pseudocyclic association scheme arising from the action of PGL(2, <i>q</i>) to the set of exterior lines in PG(2, <i>q</i>), called the elliptic scheme, under the assumption that <span>\\(q=2^m\\)</span> with <i>m</i> an odd prime satisfies the condition of our new construction. As a consequence, we obtain a new infinite family of strongly regular graphs of Latin square type with non-prime-power number of vertices.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02764-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we give a construction of strongly regular graphs from pseudocyclic association schemes, which is a common generalization of two constructions given by Fujisaki (2004). Furthermore, we prove that the pseudocyclic association scheme arising from the action of PGL(2, q) to the set of exterior lines in PG(2, q), called the elliptic scheme, under the assumption that \(q=2^m\) with m an odd prime satisfies the condition of our new construction. As a consequence, we obtain a new infinite family of strongly regular graphs of Latin square type with non-prime-power number of vertices.

分享
查看原文
来自伪环关联方案的强正则图
在本文中,我们从伪环关联方案给出了强正则图的构造,这是对 Fujisaki(2004)给出的两个构造的共同概括。此外,我们还证明了在 m 为奇素的\(q=2^m\)假设下,PGL(2, q)作用于 PG(2, q)中的外线集合所产生的伪环关联方案(称为椭圆方案)满足我们新构造的条件。因此,我们得到了一个新的无穷族,即具有非质数顶点的拉丁正方形强规则图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信