{"title":"关于图的彩虹顶点-断开连接着色的一些结果","authors":"Yindi Weng","doi":"10.1007/s00373-024-02762-z","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a nontrivial connected and vertex-colored graph. A vertex subset <i>X</i> is called <i>rainbow</i> if any two vertices in <i>X</i> have distinct colors. The graph <i>G</i> is called <i>rainbow vertex-disconnected</i> if for any two vertices <i>x</i> and <i>y</i> of <i>G</i>, there exists a vertex subset <i>S</i> such that when <i>x</i> and <i>y</i> are nonadjacent, <i>S</i> is rainbow and <i>x</i> and <i>y</i> belong to different components of <span>\\(G-S\\)</span>; whereas when <i>x</i> and <i>y</i> are adjacent, <span>\\(S+x\\)</span> or <span>\\(S+y\\)</span> is rainbow and <i>x</i> and <i>y</i> belong to different components of <span>\\((G-xy)-S\\)</span>. For a connected graph <i>G</i>, the <i>rainbow vertex-disconnection number</i> of <i>G</i>, <i>rvd</i>(<i>G</i>), is the minimum number of colors that are needed to make <i>G</i> rainbow vertex-disconnected. In this paper, we prove for any <span>\\(K_4\\)</span>-minor free graph, <span>\\(rvd(G)\\le \\Delta (G)\\)</span> and the bound is sharp. We show it is <i>NP</i>-complete to determine the rainbow vertex-disconnection numbers for bipartite graphs and split graphs. Moreover, we show for every <span>\\(\\epsilon >0\\)</span>, it is impossible to efficiently approximate the rainbow vertex-disconnection number of any bipartite graph and split graph within a factor of <span>\\(n^{\\frac{1}{3}-\\epsilon }\\)</span> unless <span>\\(ZPP=NP\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Results on the Rainbow Vertex-Disconnection Colorings of Graphs\",\"authors\":\"Yindi Weng\",\"doi\":\"10.1007/s00373-024-02762-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>G</i> be a nontrivial connected and vertex-colored graph. A vertex subset <i>X</i> is called <i>rainbow</i> if any two vertices in <i>X</i> have distinct colors. The graph <i>G</i> is called <i>rainbow vertex-disconnected</i> if for any two vertices <i>x</i> and <i>y</i> of <i>G</i>, there exists a vertex subset <i>S</i> such that when <i>x</i> and <i>y</i> are nonadjacent, <i>S</i> is rainbow and <i>x</i> and <i>y</i> belong to different components of <span>\\\\(G-S\\\\)</span>; whereas when <i>x</i> and <i>y</i> are adjacent, <span>\\\\(S+x\\\\)</span> or <span>\\\\(S+y\\\\)</span> is rainbow and <i>x</i> and <i>y</i> belong to different components of <span>\\\\((G-xy)-S\\\\)</span>. For a connected graph <i>G</i>, the <i>rainbow vertex-disconnection number</i> of <i>G</i>, <i>rvd</i>(<i>G</i>), is the minimum number of colors that are needed to make <i>G</i> rainbow vertex-disconnected. In this paper, we prove for any <span>\\\\(K_4\\\\)</span>-minor free graph, <span>\\\\(rvd(G)\\\\le \\\\Delta (G)\\\\)</span> and the bound is sharp. We show it is <i>NP</i>-complete to determine the rainbow vertex-disconnection numbers for bipartite graphs and split graphs. Moreover, we show for every <span>\\\\(\\\\epsilon >0\\\\)</span>, it is impossible to efficiently approximate the rainbow vertex-disconnection number of any bipartite graph and split graph within a factor of <span>\\\\(n^{\\\\frac{1}{3}-\\\\epsilon }\\\\)</span> unless <span>\\\\(ZPP=NP\\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02762-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02762-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
假设 G 是一个非三维连通的顶点着色图。如果 X 中任意两个顶点的颜色不同,则顶点子集 X 称为彩虹。如果对于 G 中的任意两个顶点 x 和 y,存在一个顶点子集 S,使得当 x 和 y 不相邻时,S 是彩虹,并且 x 和 y 属于 \(G-S\)的不同分量;而当 x 和 y 相邻时,\(S+x)或\(S+y)是彩虹,并且 x 和 y 属于 \((G-xy)-S\)的不同分量,那么图 G 称为彩虹顶点断开图。对于连通图 G,G 的彩虹顶点断开数 rvd(G) 是使 G 彩虹顶点断开所需的最少颜色数。在本文中,我们证明了对于任何 \(K_4\)-minor free graph,\(rvd(G)\le \Delta (G)\)和边界是尖锐的。我们证明了确定二方图和分裂图的彩虹顶点-断开数是 NP-完全的。此外,我们还证明了对于每一个 \(epsilon >0\), 除非 \(ZPP=NP\), 否则不可能在 \(n^{\frac{1}{3}-\epsilon }\) 的因子范围内有效地近似任何双向图和分裂图的彩虹顶点-互连数。
Some Results on the Rainbow Vertex-Disconnection Colorings of Graphs
Let G be a nontrivial connected and vertex-colored graph. A vertex subset X is called rainbow if any two vertices in X have distinct colors. The graph G is called rainbow vertex-disconnected if for any two vertices x and y of G, there exists a vertex subset S such that when x and y are nonadjacent, S is rainbow and x and y belong to different components of \(G-S\); whereas when x and y are adjacent, \(S+x\) or \(S+y\) is rainbow and x and y belong to different components of \((G-xy)-S\). For a connected graph G, the rainbow vertex-disconnection number of G, rvd(G), is the minimum number of colors that are needed to make G rainbow vertex-disconnected. In this paper, we prove for any \(K_4\)-minor free graph, \(rvd(G)\le \Delta (G)\) and the bound is sharp. We show it is NP-complete to determine the rainbow vertex-disconnection numbers for bipartite graphs and split graphs. Moreover, we show for every \(\epsilon >0\), it is impossible to efficiently approximate the rainbow vertex-disconnection number of any bipartite graph and split graph within a factor of \(n^{\frac{1}{3}-\epsilon }\) unless \(ZPP=NP\).