Planar Graphs with the Maximum Number of Induced 4-Cycles or 5-Cycles

Pub Date : 2024-04-05 DOI:10.1007/s00373-024-02773-w
Michael Savery
{"title":"Planar Graphs with the Maximum Number of Induced 4-Cycles or 5-Cycles","authors":"Michael Savery","doi":"10.1007/s00373-024-02773-w","DOIUrl":null,"url":null,"abstract":"<p>For large <i>n</i> we determine exactly the maximum numbers of induced <span>\\(C_4\\)</span> and <span>\\(C_5\\)</span> subgraphs that a planar graph on <i>n</i> vertices can contain. We show that <span>\\(K_{2,n-2}\\)</span> uniquely achieves this maximum in the <span>\\(C_4\\)</span> case, and we identify the graphs which achieve the maximum in the <span>\\(C_5\\)</span> case. This extends work in a paper by Hakimi and Schmeichel and a paper by Ghosh, Győri, Janzer, Paulos, Salia, and Zamora which together determine both maxima asymptotically.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02773-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For large n we determine exactly the maximum numbers of induced \(C_4\) and \(C_5\) subgraphs that a planar graph on n vertices can contain. We show that \(K_{2,n-2}\) uniquely achieves this maximum in the \(C_4\) case, and we identify the graphs which achieve the maximum in the \(C_5\) case. This extends work in a paper by Hakimi and Schmeichel and a paper by Ghosh, Győri, Janzer, Paulos, Salia, and Zamora which together determine both maxima asymptotically.

Abstract Image

分享
查看原文
具有最多诱导 4 周期或 5 周期的平面图形
对于大 n,我们精确地确定了 n 个顶点上的平面图所包含的诱导子图(\(C_4\)和\(C_5\))的最大数量。我们证明了在\(C_4\)情况下\(K_{2,n-2}\)唯一地达到了这个最大值,并且我们确定了在\(C_5\)情况下达到最大值的图。这扩展了哈基米和施梅切尔的论文以及戈什、居里、扬泽、保洛斯、萨利亚和萨莫拉的论文中的研究,这两篇论文共同渐近地确定了这两个最大值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信