使用欧拉公式计算页码下限

Pub Date : 2024-04-03 DOI:10.1007/s00373-024-02775-8
Bin Zhao, Peng Li, Jixiang Meng, Yuepeng Zhang
{"title":"使用欧拉公式计算页码下限","authors":"Bin Zhao, Peng Li, Jixiang Meng, Yuepeng Zhang","doi":"10.1007/s00373-024-02775-8","DOIUrl":null,"url":null,"abstract":"<p>The concept of book embedding, originating in computer science, has found extensive applications in various problem domains. A book embedding of a graph <i>G</i> involves arranging the vertices of <i>G</i> in an order along a line and assigning the edges to one or more half-planes. The page number of a graph is the smallest possible number of half-planes for any book embedding of the graph. Determining the page number is a key aspect of book embedding and carries significant importance. This paper aims to investigate the non-trivial lower bound of the page number for both a graph <i>G</i> and a random graph <span>\\(G\\in \\mathcal {G}(n,p)\\)</span> by incorporating two seemingly unrelated concepts: edge-arboricity and Euler’s Formula. Our analysis reveals that for a graph <i>G</i>, which is not a path, <span>\\(pn(G)\\ge \\lceil \\frac{1}{3} a_1(G)\\rceil \\)</span>, where <span>\\(a_1(G)\\)</span> denotes the edge-arboricity of <i>G</i>, and for an outerplanar graph, the lower bound is optimal. For <span>\\(G\\in \\mathcal {G}(n,p)\\)</span>, <span>\\(pn(G)\\ge \\lceil \\frac{1}{6}np(1-o(1))\\rceil \\)</span> with high probability, as long as <span>\\(\\frac{c}{n}\\le p\\le \\frac{\\root 2 \\of {3(n-1)}}{n\\log {n}}\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Euler’s Formula to Find the Lower Bound of the Page Number\",\"authors\":\"Bin Zhao, Peng Li, Jixiang Meng, Yuepeng Zhang\",\"doi\":\"10.1007/s00373-024-02775-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The concept of book embedding, originating in computer science, has found extensive applications in various problem domains. A book embedding of a graph <i>G</i> involves arranging the vertices of <i>G</i> in an order along a line and assigning the edges to one or more half-planes. The page number of a graph is the smallest possible number of half-planes for any book embedding of the graph. Determining the page number is a key aspect of book embedding and carries significant importance. This paper aims to investigate the non-trivial lower bound of the page number for both a graph <i>G</i> and a random graph <span>\\\\(G\\\\in \\\\mathcal {G}(n,p)\\\\)</span> by incorporating two seemingly unrelated concepts: edge-arboricity and Euler’s Formula. Our analysis reveals that for a graph <i>G</i>, which is not a path, <span>\\\\(pn(G)\\\\ge \\\\lceil \\\\frac{1}{3} a_1(G)\\\\rceil \\\\)</span>, where <span>\\\\(a_1(G)\\\\)</span> denotes the edge-arboricity of <i>G</i>, and for an outerplanar graph, the lower bound is optimal. For <span>\\\\(G\\\\in \\\\mathcal {G}(n,p)\\\\)</span>, <span>\\\\(pn(G)\\\\ge \\\\lceil \\\\frac{1}{6}np(1-o(1))\\\\rceil \\\\)</span> with high probability, as long as <span>\\\\(\\\\frac{c}{n}\\\\le p\\\\le \\\\frac{\\\\root 2 \\\\of {3(n-1)}}{n\\\\log {n}}\\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02775-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02775-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

书本嵌入(book embedding)的概念源于计算机科学,已被广泛应用于各种问题领域。图 G 的书本嵌入是指将图 G 的顶点按顺序沿线排列,并将边分配到一个或多个半平面上。图的页码是该图的任何书本嵌入中可能存在的最小半平面数。页码的确定是图书嵌入的关键环节,具有重要意义。本文旨在研究图 G 和随机图 \(G\in \mathcal {G}(n,p)\) 的页数的非微观下限,研究中结合了两个看似不相关的概念:边硼性(edge-arboricity)和欧拉公式(Euler's Formula)。我们的分析表明,对于不是路径的图 G 来说,\(pn(G)\ge \lceil \frac{1}{3} a_1(G)\rceil \),其中 \(a_1(G)\) 表示 G 的边邻接性,对于外平面图来说,下限是最优的。对于(G\in \mathcal {G}(n,p)\), \(pn(G)\ge \lceil \frac{1}{6}np(1-o(1))\rceil \)具有很高的概率,只要(\frac{c}{n}le p\le \frac{\root 2 \of {3(n-1)}}{n\log {n}}\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Using Euler’s Formula to Find the Lower Bound of the Page Number

The concept of book embedding, originating in computer science, has found extensive applications in various problem domains. A book embedding of a graph G involves arranging the vertices of G in an order along a line and assigning the edges to one or more half-planes. The page number of a graph is the smallest possible number of half-planes for any book embedding of the graph. Determining the page number is a key aspect of book embedding and carries significant importance. This paper aims to investigate the non-trivial lower bound of the page number for both a graph G and a random graph \(G\in \mathcal {G}(n,p)\) by incorporating two seemingly unrelated concepts: edge-arboricity and Euler’s Formula. Our analysis reveals that for a graph G, which is not a path, \(pn(G)\ge \lceil \frac{1}{3} a_1(G)\rceil \), where \(a_1(G)\) denotes the edge-arboricity of G, and for an outerplanar graph, the lower bound is optimal. For \(G\in \mathcal {G}(n,p)\), \(pn(G)\ge \lceil \frac{1}{6}np(1-o(1))\rceil \) with high probability, as long as \(\frac{c}{n}\le p\le \frac{\root 2 \of {3(n-1)}}{n\log {n}}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信