论非退格的 Berge-Turán 问题

Pub Date : 2024-03-26 DOI:10.1007/s00373-024-02757-w
Dániel Gerbner
{"title":"论非退格的 Berge-Turán 问题","authors":"Dániel Gerbner","doi":"10.1007/s00373-024-02757-w","DOIUrl":null,"url":null,"abstract":"<p>Given a hypergraph <span>\\({{\\mathcal {H}}}\\)</span> and a graph <i>G</i>, we say that <span>\\({{\\mathcal {H}}}\\)</span> is a <i>Berge</i>-<i>G</i> if there is a bijection between the hyperedges of <span>\\({{\\mathcal {H}}}\\)</span> and the edges of <i>G</i> such that each hyperedge contains its image. We denote by <span>\\(\\textrm{ex}_k(n,Berge- F)\\)</span> the largest number of hyperedges in a <i>k</i>-uniform Berge-<i>F</i>-free graph. Let <span>\\(\\textrm{ex}(n,H,F)\\)</span> denote the largest number of copies of <i>H</i> in <i>n</i>-vertex <i>F</i>-free graphs. It is known that <span>\\(\\textrm{ex}(n,K_k,F)\\le \\textrm{ex}_k(n,Berge- F)\\le \\textrm{ex}(n,K_k,F)+\\textrm{ex}(n,F)\\)</span>, thus if <span>\\(\\chi (F)&gt;r\\)</span>, then <span>\\(\\textrm{ex}_k(n,Berge- F)=(1+o(1)) \\textrm{ex}(n,K_k,F)\\)</span>. We conjecture that <span>\\(\\textrm{ex}_k(n,Berge- F)=\\textrm{ex}(n,K_k,F)\\)</span> in this case. We prove this conjecture in several instances, including the cases <span>\\(k=3\\)</span> and <span>\\(k=4\\)</span>. We prove the general bound <span>\\(\\textrm{ex}_k(n,Berge- F)= \\textrm{ex}(n,K_k,F)+O(1)\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Non-degenerate Berge–Turán Problems\",\"authors\":\"Dániel Gerbner\",\"doi\":\"10.1007/s00373-024-02757-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a hypergraph <span>\\\\({{\\\\mathcal {H}}}\\\\)</span> and a graph <i>G</i>, we say that <span>\\\\({{\\\\mathcal {H}}}\\\\)</span> is a <i>Berge</i>-<i>G</i> if there is a bijection between the hyperedges of <span>\\\\({{\\\\mathcal {H}}}\\\\)</span> and the edges of <i>G</i> such that each hyperedge contains its image. We denote by <span>\\\\(\\\\textrm{ex}_k(n,Berge- F)\\\\)</span> the largest number of hyperedges in a <i>k</i>-uniform Berge-<i>F</i>-free graph. Let <span>\\\\(\\\\textrm{ex}(n,H,F)\\\\)</span> denote the largest number of copies of <i>H</i> in <i>n</i>-vertex <i>F</i>-free graphs. It is known that <span>\\\\(\\\\textrm{ex}(n,K_k,F)\\\\le \\\\textrm{ex}_k(n,Berge- F)\\\\le \\\\textrm{ex}(n,K_k,F)+\\\\textrm{ex}(n,F)\\\\)</span>, thus if <span>\\\\(\\\\chi (F)&gt;r\\\\)</span>, then <span>\\\\(\\\\textrm{ex}_k(n,Berge- F)=(1+o(1)) \\\\textrm{ex}(n,K_k,F)\\\\)</span>. We conjecture that <span>\\\\(\\\\textrm{ex}_k(n,Berge- F)=\\\\textrm{ex}(n,K_k,F)\\\\)</span> in this case. We prove this conjecture in several instances, including the cases <span>\\\\(k=3\\\\)</span> and <span>\\\\(k=4\\\\)</span>. We prove the general bound <span>\\\\(\\\\textrm{ex}_k(n,Berge- F)= \\\\textrm{ex}(n,K_k,F)+O(1)\\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02757-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02757-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个超图\({{\mathcal {H}}}\)和一个图 G,如果\({{\mathcal {H}}}\)的超边和 G 的边之间存在双射,使得每个超边都包含它的像,那么我们就说\({{\mathcal {H}}\)是一个 Berge-G 。我们用 \(\textrm{ex}_k(n,Berge- F)\)表示 k-uniform Berge-F-free 图中最大的超边个数。让 \(\textrm{ex}(n,H,F)\) 表示无顶点 F 图中 H 的最大副本数。已知 \(\textrm{ex}(n,K_k,F)\le \textrm{ex}_k(n,Berge- F)\le \textrm{ex}(n,K_k,F)+\textrm{ex}(n,F)\), 因此如果 \(\chi (F)>;r),那么\(textrm{ex}_k(n,Berge- F)=(1+o(1))\textrm{ex}(n,K_k,F)\)。我们猜想,在这种情况下,\(textrm{ex}_k(n,Berge- F)=\textrm{ex}(n,K_k,F)\).我们在多个实例中证明了这一猜想,包括 \(k=3\) 和 \(k=4\) 两种情况。我们证明了一般约束 \(textrm{ex}_k(n,Berge- F)= \textrm{ex}(n,K_k,F)+O(1)\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On Non-degenerate Berge–Turán Problems

Given a hypergraph \({{\mathcal {H}}}\) and a graph G, we say that \({{\mathcal {H}}}\) is a Berge-G if there is a bijection between the hyperedges of \({{\mathcal {H}}}\) and the edges of G such that each hyperedge contains its image. We denote by \(\textrm{ex}_k(n,Berge- F)\) the largest number of hyperedges in a k-uniform Berge-F-free graph. Let \(\textrm{ex}(n,H,F)\) denote the largest number of copies of H in n-vertex F-free graphs. It is known that \(\textrm{ex}(n,K_k,F)\le \textrm{ex}_k(n,Berge- F)\le \textrm{ex}(n,K_k,F)+\textrm{ex}(n,F)\), thus if \(\chi (F)>r\), then \(\textrm{ex}_k(n,Berge- F)=(1+o(1)) \textrm{ex}(n,K_k,F)\). We conjecture that \(\textrm{ex}_k(n,Berge- F)=\textrm{ex}(n,K_k,F)\) in this case. We prove this conjecture in several instances, including the cases \(k=3\) and \(k=4\). We prove the general bound \(\textrm{ex}_k(n,Berge- F)= \textrm{ex}(n,K_k,F)+O(1)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信