无爪砖的可拆卸边缘

IF 0.6 4区 数学 Q3 MATHEMATICS
{"title":"无爪砖的可拆卸边缘","authors":"","doi":"10.1007/s00373-024-02769-6","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>An edge <em>e</em> in a matching covered graph <em>G</em> is <em>removable</em> if <span> <span>\\(G-e\\)</span> </span> is matching covered. Removable edges were introduced by Lovász and Plummer in connection with ear decompositions of matching covered graphs. A <em>brick</em> is a non-bipartite matching covered graph without non-trivial tight cuts. The importance of bricks stems from the fact that they are building blocks of matching covered graphs. Lovász proved that every brick other than <span> <span>\\(K_4\\)</span> </span> and <span> <span>\\(\\overline{C_6}\\)</span> </span> has a removable edge. It is known that every 3-connected claw-free graph with even number of vertices is a brick. By characterizing the structure of adjacent non-removable edges, we show that every claw-free brick <em>G</em> with more than 6 vertices has at least 5|<em>V</em>(<em>G</em>)|/8 removable edges.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"138 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Removable Edges in Claw-Free Bricks\",\"authors\":\"\",\"doi\":\"10.1007/s00373-024-02769-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>An edge <em>e</em> in a matching covered graph <em>G</em> is <em>removable</em> if <span> <span>\\\\(G-e\\\\)</span> </span> is matching covered. Removable edges were introduced by Lovász and Plummer in connection with ear decompositions of matching covered graphs. A <em>brick</em> is a non-bipartite matching covered graph without non-trivial tight cuts. The importance of bricks stems from the fact that they are building blocks of matching covered graphs. Lovász proved that every brick other than <span> <span>\\\\(K_4\\\\)</span> </span> and <span> <span>\\\\(\\\\overline{C_6}\\\\)</span> </span> has a removable edge. It is known that every 3-connected claw-free graph with even number of vertices is a brick. By characterizing the structure of adjacent non-removable edges, we show that every claw-free brick <em>G</em> with more than 6 vertices has at least 5|<em>V</em>(<em>G</em>)|/8 removable edges.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"138 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02769-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02769-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 如果 \(G-e\) 是匹配覆盖图,则匹配覆盖图 G 中的边 e 是可移除的。可移除边是由 Lovász 和 Plummer 在匹配覆盖图的耳分解中引入的。砖块是指没有非难紧切的非双方格匹配覆盖图。砖块的重要性在于它们是匹配覆盖图的构件。洛瓦兹证明了除\(K_4\)和\(\overline{C_6}\)之外的每个砖都有一条可移动边。众所周知,每一个具有偶数个顶点的 3 连无爪图都是一块砖。通过描述相邻不可移动边的结构,我们证明了每个顶点数超过 6 的无爪图 G 至少有 5|V(G)|/8 条可移动边。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Removable Edges in Claw-Free Bricks

Abstract

An edge e in a matching covered graph G is removable if \(G-e\) is matching covered. Removable edges were introduced by Lovász and Plummer in connection with ear decompositions of matching covered graphs. A brick is a non-bipartite matching covered graph without non-trivial tight cuts. The importance of bricks stems from the fact that they are building blocks of matching covered graphs. Lovász proved that every brick other than \(K_4\) and \(\overline{C_6}\) has a removable edge. It is known that every 3-connected claw-free graph with even number of vertices is a brick. By characterizing the structure of adjacent non-removable edges, we show that every claw-free brick G with more than 6 vertices has at least 5|V(G)|/8 removable edges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信