{"title":"Extremal Edge General Position Sets in Some Graphs","authors":"","doi":"10.1007/s00373-024-02770-z","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>A set of edges <span> <span>\\(X\\subseteq E(G)\\)</span> </span> of a graph <em>G</em> is an edge general position set if no three edges from <em>X</em> lie on a common shortest path. The edge general position number <span> <span>\\({\\textrm{gp}}_{\\textrm{e}}(G)\\)</span> </span> of <em>G</em> is the cardinality of a largest edge general position set in <em>G</em>. Graphs <em>G</em> with <span> <span>\\({\\textrm{gp}}_{{\\textrm{e}}}(G) = |E(G)| - 1\\)</span> </span> and with <span> <span>\\({\\textrm{gp}}_{{\\textrm{e}}}(G) = 3\\)</span> </span> are respectively characterized. Sharp upper and lower bounds on <span> <span>\\({\\textrm{gp}}_{{\\textrm{e}}}(G)\\)</span> </span> are proved for block graphs <em>G</em> and exact values are determined for several specific block graphs.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"56 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02770-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A set of edges \(X\subseteq E(G)\) of a graph G is an edge general position set if no three edges from X lie on a common shortest path. The edge general position number \({\textrm{gp}}_{\textrm{e}}(G)\) of G is the cardinality of a largest edge general position set in G. Graphs G with \({\textrm{gp}}_{{\textrm{e}}}(G) = |E(G)| - 1\) and with \({\textrm{gp}}_{{\textrm{e}}}(G) = 3\) are respectively characterized. Sharp upper and lower bounds on \({\textrm{gp}}_{{\textrm{e}}}(G)\) are proved for block graphs G and exact values are determined for several specific block graphs.
期刊介绍:
Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.