On Non-degenerate Berge–Turán Problems

IF 0.6 4区 数学 Q3 MATHEMATICS
Dániel Gerbner
{"title":"On Non-degenerate Berge–Turán Problems","authors":"Dániel Gerbner","doi":"10.1007/s00373-024-02757-w","DOIUrl":null,"url":null,"abstract":"<p>Given a hypergraph <span>\\({{\\mathcal {H}}}\\)</span> and a graph <i>G</i>, we say that <span>\\({{\\mathcal {H}}}\\)</span> is a <i>Berge</i>-<i>G</i> if there is a bijection between the hyperedges of <span>\\({{\\mathcal {H}}}\\)</span> and the edges of <i>G</i> such that each hyperedge contains its image. We denote by <span>\\(\\textrm{ex}_k(n,Berge- F)\\)</span> the largest number of hyperedges in a <i>k</i>-uniform Berge-<i>F</i>-free graph. Let <span>\\(\\textrm{ex}(n,H,F)\\)</span> denote the largest number of copies of <i>H</i> in <i>n</i>-vertex <i>F</i>-free graphs. It is known that <span>\\(\\textrm{ex}(n,K_k,F)\\le \\textrm{ex}_k(n,Berge- F)\\le \\textrm{ex}(n,K_k,F)+\\textrm{ex}(n,F)\\)</span>, thus if <span>\\(\\chi (F)&gt;r\\)</span>, then <span>\\(\\textrm{ex}_k(n,Berge- F)=(1+o(1)) \\textrm{ex}(n,K_k,F)\\)</span>. We conjecture that <span>\\(\\textrm{ex}_k(n,Berge- F)=\\textrm{ex}(n,K_k,F)\\)</span> in this case. We prove this conjecture in several instances, including the cases <span>\\(k=3\\)</span> and <span>\\(k=4\\)</span>. We prove the general bound <span>\\(\\textrm{ex}_k(n,Berge- F)= \\textrm{ex}(n,K_k,F)+O(1)\\)</span>.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"43 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02757-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a hypergraph \({{\mathcal {H}}}\) and a graph G, we say that \({{\mathcal {H}}}\) is a Berge-G if there is a bijection between the hyperedges of \({{\mathcal {H}}}\) and the edges of G such that each hyperedge contains its image. We denote by \(\textrm{ex}_k(n,Berge- F)\) the largest number of hyperedges in a k-uniform Berge-F-free graph. Let \(\textrm{ex}(n,H,F)\) denote the largest number of copies of H in n-vertex F-free graphs. It is known that \(\textrm{ex}(n,K_k,F)\le \textrm{ex}_k(n,Berge- F)\le \textrm{ex}(n,K_k,F)+\textrm{ex}(n,F)\), thus if \(\chi (F)>r\), then \(\textrm{ex}_k(n,Berge- F)=(1+o(1)) \textrm{ex}(n,K_k,F)\). We conjecture that \(\textrm{ex}_k(n,Berge- F)=\textrm{ex}(n,K_k,F)\) in this case. We prove this conjecture in several instances, including the cases \(k=3\) and \(k=4\). We prove the general bound \(\textrm{ex}_k(n,Berge- F)= \textrm{ex}(n,K_k,F)+O(1)\).

论非退格的 Berge-Turán 问题
给定一个超图\({{\mathcal {H}}}\)和一个图 G,如果\({{\mathcal {H}}}\)的超边和 G 的边之间存在双射,使得每个超边都包含它的像,那么我们就说\({{\mathcal {H}}\)是一个 Berge-G 。我们用 \(\textrm{ex}_k(n,Berge- F)\)表示 k-uniform Berge-F-free 图中最大的超边个数。让 \(\textrm{ex}(n,H,F)\) 表示无顶点 F 图中 H 的最大副本数。已知 \(\textrm{ex}(n,K_k,F)\le \textrm{ex}_k(n,Berge- F)\le \textrm{ex}(n,K_k,F)+\textrm{ex}(n,F)\), 因此如果 \(\chi (F)>;r),那么\(textrm{ex}_k(n,Berge- F)=(1+o(1))\textrm{ex}(n,K_k,F)\)。我们猜想,在这种情况下,\(textrm{ex}_k(n,Berge- F)=\textrm{ex}(n,K_k,F)\).我们在多个实例中证明了这一猜想,包括 \(k=3\) 和 \(k=4\) 两种情况。我们证明了一般约束 \(textrm{ex}_k(n,Berge- F)= \textrm{ex}(n,K_k,F)+O(1)\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信