某些图中的极边一般位置集

Pub Date : 2024-03-26 DOI:10.1007/s00373-024-02770-z
{"title":"某些图中的极边一般位置集","authors":"","doi":"10.1007/s00373-024-02770-z","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>A set of edges <span> <span>\\(X\\subseteq E(G)\\)</span> </span> of a graph <em>G</em> is an edge general position set if no three edges from <em>X</em> lie on a common shortest path. The edge general position number <span> <span>\\({\\textrm{gp}}_{\\textrm{e}}(G)\\)</span> </span> of <em>G</em> is the cardinality of a largest edge general position set in <em>G</em>. Graphs <em>G</em> with <span> <span>\\({\\textrm{gp}}_{{\\textrm{e}}}(G) = |E(G)| - 1\\)</span> </span> and with <span> <span>\\({\\textrm{gp}}_{{\\textrm{e}}}(G) = 3\\)</span> </span> are respectively characterized. Sharp upper and lower bounds on <span> <span>\\({\\textrm{gp}}_{{\\textrm{e}}}(G)\\)</span> </span> are proved for block graphs <em>G</em> and exact values are determined for several specific block graphs.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal Edge General Position Sets in Some Graphs\",\"authors\":\"\",\"doi\":\"10.1007/s00373-024-02770-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>A set of edges <span> <span>\\\\(X\\\\subseteq E(G)\\\\)</span> </span> of a graph <em>G</em> is an edge general position set if no three edges from <em>X</em> lie on a common shortest path. The edge general position number <span> <span>\\\\({\\\\textrm{gp}}_{\\\\textrm{e}}(G)\\\\)</span> </span> of <em>G</em> is the cardinality of a largest edge general position set in <em>G</em>. Graphs <em>G</em> with <span> <span>\\\\({\\\\textrm{gp}}_{{\\\\textrm{e}}}(G) = |E(G)| - 1\\\\)</span> </span> and with <span> <span>\\\\({\\\\textrm{gp}}_{{\\\\textrm{e}}}(G) = 3\\\\)</span> </span> are respectively characterized. Sharp upper and lower bounds on <span> <span>\\\\({\\\\textrm{gp}}_{{\\\\textrm{e}}}(G)\\\\)</span> </span> are proved for block graphs <em>G</em> and exact values are determined for several specific block graphs.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02770-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02770-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Abstract 如果没有来自 X 的三条边位于一条共同的最短路径上,那么图 G 的边集 \(X\subseteq E(G)\)就是一个边一般位置集。G 的边一般位置数 ({\textrm{gp}}_{\textrm{e}}(G)\)是 G 中最大的一个边一般位置集的卡入度。分别描述了具有 \({\textrm{gp}}_{{\textrm{e}}(G) = |E(G)| - 1\) 和 \({\textrm{gp}}_{{\textrm{e}}(G) = 3\) 的图 G。对于块图 G,证明了 \({\textrm{gp}}_{\textrm{e}}}(G)\)的尖锐上界和下界,并确定了几个特定块图的精确值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Extremal Edge General Position Sets in Some Graphs

Abstract

A set of edges \(X\subseteq E(G)\) of a graph G is an edge general position set if no three edges from X lie on a common shortest path. The edge general position number \({\textrm{gp}}_{\textrm{e}}(G)\) of G is the cardinality of a largest edge general position set in G. Graphs G with \({\textrm{gp}}_{{\textrm{e}}}(G) = |E(G)| - 1\) and with \({\textrm{gp}}_{{\textrm{e}}}(G) = 3\) are respectively characterized. Sharp upper and lower bounds on \({\textrm{gp}}_{{\textrm{e}}}(G)\) are proved for block graphs G and exact values are determined for several specific block graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信