Some Results on the Rainbow Vertex-Disconnection Colorings of Graphs

IF 0.6 4区 数学 Q3 MATHEMATICS
Yindi Weng
{"title":"Some Results on the Rainbow Vertex-Disconnection Colorings of Graphs","authors":"Yindi Weng","doi":"10.1007/s00373-024-02762-z","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a nontrivial connected and vertex-colored graph. A vertex subset <i>X</i> is called <i>rainbow</i> if any two vertices in <i>X</i> have distinct colors. The graph <i>G</i> is called <i>rainbow vertex-disconnected</i> if for any two vertices <i>x</i> and <i>y</i> of <i>G</i>, there exists a vertex subset <i>S</i> such that when <i>x</i> and <i>y</i> are nonadjacent, <i>S</i> is rainbow and <i>x</i> and <i>y</i> belong to different components of <span>\\(G-S\\)</span>; whereas when <i>x</i> and <i>y</i> are adjacent, <span>\\(S+x\\)</span> or <span>\\(S+y\\)</span> is rainbow and <i>x</i> and <i>y</i> belong to different components of <span>\\((G-xy)-S\\)</span>. For a connected graph <i>G</i>, the <i>rainbow vertex-disconnection number</i> of <i>G</i>, <i>rvd</i>(<i>G</i>), is the minimum number of colors that are needed to make <i>G</i> rainbow vertex-disconnected. In this paper, we prove for any <span>\\(K_4\\)</span>-minor free graph, <span>\\(rvd(G)\\le \\Delta (G)\\)</span> and the bound is sharp. We show it is <i>NP</i>-complete to determine the rainbow vertex-disconnection numbers for bipartite graphs and split graphs. Moreover, we show for every <span>\\(\\epsilon &gt;0\\)</span>, it is impossible to efficiently approximate the rainbow vertex-disconnection number of any bipartite graph and split graph within a factor of <span>\\(n^{\\frac{1}{3}-\\epsilon }\\)</span> unless <span>\\(ZPP=NP\\)</span>.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"136 3 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02762-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a nontrivial connected and vertex-colored graph. A vertex subset X is called rainbow if any two vertices in X have distinct colors. The graph G is called rainbow vertex-disconnected if for any two vertices x and y of G, there exists a vertex subset S such that when x and y are nonadjacent, S is rainbow and x and y belong to different components of \(G-S\); whereas when x and y are adjacent, \(S+x\) or \(S+y\) is rainbow and x and y belong to different components of \((G-xy)-S\). For a connected graph G, the rainbow vertex-disconnection number of G, rvd(G), is the minimum number of colors that are needed to make G rainbow vertex-disconnected. In this paper, we prove for any \(K_4\)-minor free graph, \(rvd(G)\le \Delta (G)\) and the bound is sharp. We show it is NP-complete to determine the rainbow vertex-disconnection numbers for bipartite graphs and split graphs. Moreover, we show for every \(\epsilon >0\), it is impossible to efficiently approximate the rainbow vertex-disconnection number of any bipartite graph and split graph within a factor of \(n^{\frac{1}{3}-\epsilon }\) unless \(ZPP=NP\).

关于图的彩虹顶点-断开连接着色的一些结果
假设 G 是一个非三维连通的顶点着色图。如果 X 中任意两个顶点的颜色不同,则顶点子集 X 称为彩虹。如果对于 G 中的任意两个顶点 x 和 y,存在一个顶点子集 S,使得当 x 和 y 不相邻时,S 是彩虹,并且 x 和 y 属于 \(G-S\)的不同分量;而当 x 和 y 相邻时,\(S+x)或\(S+y)是彩虹,并且 x 和 y 属于 \((G-xy)-S\)的不同分量,那么图 G 称为彩虹顶点断开图。对于连通图 G,G 的彩虹顶点断开数 rvd(G) 是使 G 彩虹顶点断开所需的最少颜色数。在本文中,我们证明了对于任何 \(K_4\)-minor free graph,\(rvd(G)\le \Delta (G)\)和边界是尖锐的。我们证明了确定二方图和分裂图的彩虹顶点-断开数是 NP-完全的。此外,我们还证明了对于每一个 \(epsilon >0\), 除非 \(ZPP=NP\), 否则不可能在 \(n^{\frac{1}{3}-\epsilon }\) 的因子范围内有效地近似任何双向图和分裂图的彩虹顶点-互连数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信