步行支配和无 HHD 图形

IF 0.6 4区 数学 Q3 MATHEMATICS
Silvia B. Tondato
{"title":"步行支配和无 HHD 图形","authors":"Silvia B. Tondato","doi":"10.1007/s00373-024-02771-y","DOIUrl":null,"url":null,"abstract":"<p>HHD-free is the class of graphs which contain no house, hole, or domino as induced subgraph. It is known that HHD-free graphs can be characterized via LexBFS-ordering and via <span>\\(m^3\\)</span>-convexity. In this paper we present new characterizations of HHD-free via domination of paths and walks. To achieve this, in particular we concentrate our attention on <span>\\(m_3\\)</span> path, i.e, an induced path of length at least 3 between two non-adjacent vertices in a graph <i>G</i>. We show that the domination between induced paths, paths and walks versus <span>\\(m_3\\)</span> paths, gives rise to characterization of HHD-free. We also characterize the class of graphs in which every <span>\\(m_3\\)</span> path dominates every path, induced path, walk, and <span>\\(m_3\\)</span> path, respectively.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"92 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Walk Domination and HHD-Free Graphs\",\"authors\":\"Silvia B. Tondato\",\"doi\":\"10.1007/s00373-024-02771-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>HHD-free is the class of graphs which contain no house, hole, or domino as induced subgraph. It is known that HHD-free graphs can be characterized via LexBFS-ordering and via <span>\\\\(m^3\\\\)</span>-convexity. In this paper we present new characterizations of HHD-free via domination of paths and walks. To achieve this, in particular we concentrate our attention on <span>\\\\(m_3\\\\)</span> path, i.e, an induced path of length at least 3 between two non-adjacent vertices in a graph <i>G</i>. We show that the domination between induced paths, paths and walks versus <span>\\\\(m_3\\\\)</span> paths, gives rise to characterization of HHD-free. We also characterize the class of graphs in which every <span>\\\\(m_3\\\\)</span> path dominates every path, induced path, walk, and <span>\\\\(m_3\\\\)</span> path, respectively.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02771-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02771-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

无 HHD 图是一类不包含房子、洞或多米诺诱导子图的图。众所周知,无 HHD 图可以通过 LexBFS 排序和 \(m^3\)-convexity 来表征。在本文中,我们通过路径和行走的支配性提出了无 HHD 图的新特征。为此,我们特别关注了 \(m_3\) 路径,即图 G 中两个非相邻顶点之间长度至少为 3 的诱导路径。我们证明了诱导路径、路径和行走与 \(m_3\) 路径之间的支配关系,从而得出了无 HHD 的特征。我们还描述了一类图的特征,在这类图中,每一条 (m_3\)路径分别支配每一条路径、诱导路径、走行和 (m_3\)路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Walk Domination and HHD-Free Graphs

Walk Domination and HHD-Free Graphs

HHD-free is the class of graphs which contain no house, hole, or domino as induced subgraph. It is known that HHD-free graphs can be characterized via LexBFS-ordering and via \(m^3\)-convexity. In this paper we present new characterizations of HHD-free via domination of paths and walks. To achieve this, in particular we concentrate our attention on \(m_3\) path, i.e, an induced path of length at least 3 between two non-adjacent vertices in a graph G. We show that the domination between induced paths, paths and walks versus \(m_3\) paths, gives rise to characterization of HHD-free. We also characterize the class of graphs in which every \(m_3\) path dominates every path, induced path, walk, and \(m_3\) path, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信