2021 IEEE International Interconnect Technology Conference (IITC)最新文献

筛选
英文 中文
Fabrication and Characterization of ISC embedded Interposer for High Performance Interconnection 用于高性能互连的ISC嵌入式中间层的制备与表征
2021 IEEE International Interconnect Technology Conference (IITC) Pub Date : 2021-07-06 DOI: 10.1109/IITC51362.2021.9537342
Won Ji Park, Min Guk Kang, J. Oh, Shaofeng Ding, Ji Hyung Kim, Jesse Hwang, Yun Ki Choi, Jung-Ho Park, Won Hyoung Lee, Seung Ki Nam, Seong Wook Moon, J. Youn, Jeonghoon Ahn
{"title":"Fabrication and Characterization of ISC embedded Interposer for High Performance Interconnection","authors":"Won Ji Park, Min Guk Kang, J. Oh, Shaofeng Ding, Ji Hyung Kim, Jesse Hwang, Yun Ki Choi, Jung-Ho Park, Won Hyoung Lee, Seung Ki Nam, Seong Wook Moon, J. Youn, Jeonghoon Ahn","doi":"10.1109/IITC51362.2021.9537342","DOIUrl":"https://doi.org/10.1109/IITC51362.2021.9537342","url":null,"abstract":"Interposer to interconnect between the electronic components has been developed for the last few decades because it can improve the system performance effectively, compared to the system with intra-chip wiring. In this paper, the integrated stack capacitor (ISC) embedded interposer system was demonstrated with the approximately 8 times higher capacitance (Ci) than interposer with MIM (Metal / Insulator / Metal capacitor). The resistance and leakage current were measured and the results indicate that there were no the open fail inside the system. In addition, WLR (Wafer Level Reliability) was proved using TDDB (Time Dependent Dielectric Breakdown), Vramp, HTS (High Temperature Storage), TC (Thermal Cycle) and Pre-con tests and finally, all requirements of WLR are satisfied.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79494791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Process Integration of High Aspect Ratio Vias with a Comparison between Co and Ru Metallizations 高纵横比通孔的工艺集成及Co和Ru金属化的比较
2021 IEEE International Interconnect Technology Conference (IITC) Pub Date : 2021-07-06 DOI: 10.1109/IITC51362.2021.9537535
V. Vega-Gonzalez, D. Montero, J. Versluijs, O. Pedreira, N. Jourdan, H. Puliyalil, B. Chehab, T. Peissker, A. Haider, D. Batuk, G. Martinez, J. Geypen, Q. Le, N. Bazzazian, N. Heylen, M. H. van der Veen, Z. El-Mekki, T. Webers, H. Vats, L. Rynders, M. Cupák, J. Uk-Lee, Y. Drissi, L. Halipré, W. Gillijns, A. Charley, P. Verdonck, T. Witters, S. Gompel, Y. Kimura, I. Ciofi, B. de Wachter, J. Swerts, E. Grieten, M. Ercken, R. Kim, K. Croes, P. Leray, M. Jaysankar, N. Nagesh, L. Ramakers, G. Murdoch, S. Park, Z. Tokei, E. Dentoni-Litta, N. Horiguchi
{"title":"Process Integration of High Aspect Ratio Vias with a Comparison between Co and Ru Metallizations","authors":"V. Vega-Gonzalez, D. Montero, J. Versluijs, O. Pedreira, N. Jourdan, H. Puliyalil, B. Chehab, T. Peissker, A. Haider, D. Batuk, G. Martinez, J. Geypen, Q. Le, N. Bazzazian, N. Heylen, M. H. van der Veen, Z. El-Mekki, T. Webers, H. Vats, L. Rynders, M. Cupák, J. Uk-Lee, Y. Drissi, L. Halipré, W. Gillijns, A. Charley, P. Verdonck, T. Witters, S. Gompel, Y. Kimura, I. Ciofi, B. de Wachter, J. Swerts, E. Grieten, M. Ercken, R. Kim, K. Croes, P. Leray, M. Jaysankar, N. Nagesh, L. Ramakers, G. Murdoch, S. Park, Z. Tokei, E. Dentoni-Litta, N. Horiguchi","doi":"10.1109/IITC51362.2021.9537535","DOIUrl":"https://doi.org/10.1109/IITC51362.2021.9537535","url":null,"abstract":"The integration of high aspect-ratio (AR) vias or supervias (SV) with a min CDbottom = 10.5 nm and a max AR = 5.8 is demonstrated, allowing a comparison between ruthenium (Ru) and cobalt (Co) chemical vapor deposition (CVD) metallizations. Ru gave a resistance ~2x higher than Co when a 1.1 nm titanium nitride (TiN) film, realized by atomic layer deposition (ALD), was used as an adhesion/nucleation layer. The lowest SV resistance of 56 Ω at the median was obtained with 0.3 nm of titanium oxide (TiOx) ALD and Ru CVD. This configuration gave a 3.4x lower resistance than the equivalent scheme with 0.3 nm TiN ALD and 15% lower resistance than the stacked-via configuration (with 0.3 nm TiOx and Ru fill), meaning that an IR-drop penalty is avoided when compared to the stacked-via approach. A congestion reduction can also be expected from the CD reduction of the SVs as the exclusion area in the intermediate layer can be smaller. Thermal shock tests for both Ru and Co SVs produced no failure after 1000 cycles between −50 °C and 125 °C, and 250 hours.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81399944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Development of Manganese Nitride Resistor with Near-Zero Temperature-Coefficient of Resistance to Achieve High-Thermal-Stability ICs 实现高热稳定性集成电路的近零电阻系数氮化锰电阻器的研制
2021 IEEE International Interconnect Technology Conference (IITC) Pub Date : 2021-07-06 DOI: 10.1109/IITC51362.2021.9537336
H. Kino, T. Fukushima, Tetsu Tanaka
{"title":"Development of Manganese Nitride Resistor with Near-Zero Temperature-Coefficient of Resistance to Achieve High-Thermal-Stability ICs","authors":"H. Kino, T. Fukushima, Tetsu Tanaka","doi":"10.1109/IITC51362.2021.9537336","DOIUrl":"https://doi.org/10.1109/IITC51362.2021.9537336","url":null,"abstract":"The resistance of the metal wirings in the integrated circuits increases due to the decrease of the mean free path of electrons with the temperature increase. This thermal instability requires redundancy circuits. On the other hand, several materials have the saturation characteristics of the mean free path around room temperature. The anti-perovskite manganese nitride compound material is one of them. The anti-perovskite manganese nitride compounds show a flat resistance-temperature curve around room temperature. However, the flat resistance-temperature curves have been obtained with only the sintered bulk materials. It has not become clear the characteristics of the manganese nitride compounds in the micro/nanoscale. In this study, we proposed manganese nitride wiring for high-thermal-stability systems. Then, we fabricated and evaluated the micro/nanoscale manganese nitride compound wiring with the complementary metal-oxide-semiconductor compatible process.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82447280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Copper Large-Scale Grain Growth by UV Nanosecond Pulsed Laser Annealing 紫外光纳秒脉冲激光退火制备铜晶粒
2021 IEEE International Interconnect Technology Conference (IITC) Pub Date : 2021-07-06 DOI: 10.1109/IITC51362.2021.9537312
T. Tabata, P. Raynal, F. Rozé, Sebastien Halty, Louis Thuries, F. Cristiano, E. Scheid, F. Mazzamuto
{"title":"Copper Large-Scale Grain Growth by UV Nanosecond Pulsed Laser Annealing","authors":"T. Tabata, P. Raynal, F. Rozé, Sebastien Halty, Louis Thuries, F. Cristiano, E. Scheid, F. Mazzamuto","doi":"10.1109/IITC51362.2021.9537312","DOIUrl":"https://doi.org/10.1109/IITC51362.2021.9537312","url":null,"abstract":"UV nanosecond pulsed laser annealing (UV NLA) enables both surface-localized heating and short timescale high temperature processing, which can be advantageous to reduce metal line resistance by enlarging metal grains in lines or in thin films, while maintaining the integrity and performance of surrounding structures. In this work UV NLA is applied on a typical Cu thin film, demonstrating a mean grain size of over 1 μm and 400 nm in a melt and sub-melt regime, respectively. Along with such grain enlargement, film resistivity is also reduced.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89557173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Reliability of Barrierless PVD Mo 无障碍PVD Mo的可靠性
2021 IEEE International Interconnect Technology Conference (IITC) Pub Date : 2021-07-06 DOI: 10.1109/IITC51362.2021.9537545
D. Tierno, M. Hosseini, M. H. van der Veen, A. Dangol, K. Croes, S. Demuynck, Z. Tokei, E. Litta, N. Horiguchi
{"title":"Reliability of Barrierless PVD Mo","authors":"D. Tierno, M. Hosseini, M. H. van der Veen, A. Dangol, K. Croes, S. Demuynck, Z. Tokei, E. Litta, N. Horiguchi","doi":"10.1109/IITC51362.2021.9537545","DOIUrl":"https://doi.org/10.1109/IITC51362.2021.9537545","url":null,"abstract":"We evaluate the reliability of barrierless Mo metallization on various dielectrics that are used in both BEOL and MOL integration schemes. In particular, we assess the risk of metal drift-induced failure in SiO<inf>2</inf>, LK3.0, SiCO and Si<inf>3</inf>N<inf>4</inf> films by performing TDDB measurements on MIM planar capacitors. We show that Mo does not drift in SiO<inf>2</inf>, LK3.0, and SiCO. Despite a thoroughly failure analysis no definitive conclusion could be reached for the Si<inf>3</inf>N<inf>4</inf> films.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86019136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Improved Contacts to Synthetic Monolayer MoS2 – A Statistical Study 改进接触合成单层二硫化钼的统计研究
2021 IEEE International Interconnect Technology Conference (IITC) Pub Date : 2021-07-06 DOI: 10.1109/IITC51362.2021.9537515
Aravindh Kumar, A. Tang, H. Wong, K. Saraswat
{"title":"Improved Contacts to Synthetic Monolayer MoS2 – A Statistical Study","authors":"Aravindh Kumar, A. Tang, H. Wong, K. Saraswat","doi":"10.1109/IITC51362.2021.9537515","DOIUrl":"https://doi.org/10.1109/IITC51362.2021.9537515","url":null,"abstract":"Two-dimensional (2D) semiconductors are promising candidates for scaled transistors because they are immune to mobility degradation at the monolayer limit. However, sub-10 nm scaling of 2D semiconductors, such as MoS2, is limited by the contact resistance. In this work, we show for the first time a statistical study of Au contacts to chemical vapor deposited monolayer MoS2 using transmission line model (TLM) structures, before and after dielectric encapsulation. We report contact resistance values as low as 330 ohm-um, which is the lowest value reported to date. We further study the effect of Al2O3 encapsulation on variability in contact resistance and other device metrics. Finally, we note some deviations in the TLM model for short-channel devices in the back-gated configuration and discuss possible modifications to improve the model accuracy.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87244532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Low Resistivity Titanium Nitride Thin Film Fabricated by Atomic Layer Deposition on Silicon 硅原子层沉积制备低电阻率氮化钛薄膜
2021 IEEE International Interconnect Technology Conference (IITC) Pub Date : 2021-07-06 DOI: 10.1109/IITC51362.2021.9537463
Cheng-Hsuan Kuo, V. Wang, Zichen Zhang, J. Spiegelman, D. Alvarez, A. Kummel, SeongUk Yun, H. Simka
{"title":"Low Resistivity Titanium Nitride Thin Film Fabricated by Atomic Layer Deposition on Silicon","authors":"Cheng-Hsuan Kuo, V. Wang, Zichen Zhang, J. Spiegelman, D. Alvarez, A. Kummel, SeongUk Yun, H. Simka","doi":"10.1109/IITC51362.2021.9537463","DOIUrl":"https://doi.org/10.1109/IITC51362.2021.9537463","url":null,"abstract":"A low temperature (300°C–350°C) TiN thermal ALD process using titanium tetrachloride (TiCl4) and anhydrous hydrazine was developed to yield films with resistivities below 200 μohm-cm. Surface treatments such as Ar plasma and atomic hydrogen were applied to further reduce the surface impurities including all halogens. These experiments indicate that minimizing oxygen concentration using an ultra-clean ALD process with minimum background oxidants and high purity precursors are keys in producing TiN thin films with low resistivity.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88402380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Atomic Layer Deposition of Titanium Silicate for Multi-Patterning Process 硅酸钛原子层沉积的多图像化研究
2021 IEEE International Interconnect Technology Conference (IITC) Pub Date : 2021-07-06 DOI: 10.1109/IITC51362.2021.9537517
Sang-heon Lee, Seunggi Seo, Wontae Noh, I. Oh, Hyungjun Kim
{"title":"Atomic Layer Deposition of Titanium Silicate for Multi-Patterning Process","authors":"Sang-heon Lee, Seunggi Seo, Wontae Noh, I. Oh, Hyungjun Kim","doi":"10.1109/IITC51362.2021.9537517","DOIUrl":"https://doi.org/10.1109/IITC51362.2021.9537517","url":null,"abstract":"We develop the atomic layer deposition (ALD) process of titanium silicate with halide-free precursor and evaluate film properties as a spacer for self-aligned double/quadruple patterning (SADP/SAQP). Growth characteristics are investigated depending on substrate temperature. Growth per cycle (GPC) at 100 °C is largely observed than the estimated value, while that as 200 °C shows an opposite trend. There have been reports on ALD ternary oxides, but different growth characteristics observed in this work have not been fully understood. In this work, the growth behavior of ALD titanium silicate are studied by correlating different characterization results, including infrared spectra, chemical compositions, and X-ray reflection spectra. Correlative results suggest that the surface density of hydroxyl group would be a key role for different growth characteristics of titanium silicates. Also, the feasibility of ALD titanium silicate as a spacer is evaluated, such as etch rates and deposited titanium silicates shows better quality than a conventional SiO2 spacer. This study on ALD titanium silicate should significantly expand multi-patterning applications, especially in a semiconductor field.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84933805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On-die Interconnect Innovations for Future Technology Nodes 面向未来技术节点的片上互连创新
2021 IEEE International Interconnect Technology Conference (IITC) Pub Date : 2021-07-06 DOI: 10.1109/IITC51362.2021.9537483
M. Kobrinsky
{"title":"On-die Interconnect Innovations for Future Technology Nodes","authors":"M. Kobrinsky","doi":"10.1109/IITC51362.2021.9537483","DOIUrl":"https://doi.org/10.1109/IITC51362.2021.9537483","url":null,"abstract":"Rapidly evolving requirements for on-die interconnects resulting from scaling and performance needs of current and future products is bringing about an exciting acceleration of the rate of innovations. In this paper, we will link evolutionary technology node needs and disruptive trends to interconnect requirements and to the key technologies needed to address future challenges, which include the introduction of new materials, as well as new geometries and structures.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74101811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contact Interface Characterization of Graphene contacted MoS2 FETs 石墨烯接触MoS2 fet的接触界面表征
2021 IEEE International Interconnect Technology Conference (IITC) Pub Date : 2021-07-06 DOI: 10.1109/IITC51362.2021.9537337
V. Mootheri, A. Minj, G. Arutchelvan, A. Leonhardt, I. Asselberghs, M. Heyns, I. Radu, D. Lin
{"title":"Contact Interface Characterization of Graphene contacted MoS2 FETs","authors":"V. Mootheri, A. Minj, G. Arutchelvan, A. Leonhardt, I. Asselberghs, M. Heyns, I. Radu, D. Lin","doi":"10.1109/IITC51362.2021.9537337","DOIUrl":"https://doi.org/10.1109/IITC51362.2021.9537337","url":null,"abstract":"Graphene based 2D electrical contacts have been proposed to mitigate the contact resistance bottleneck in 2D material based transistors. In this work, we present a detailed analysis of Ru-graphene and Ni-graphene contacts to 2.1nm thick CVD MoS2, which show a contact resistance of 9.34 kΩ – μm and 17.1 kΩ – μm, respectively. We report a novel physical characterization strategy to characterize the MoS2-contact interface by inverting the MoS2 devices, exposing the contact interface. Using Raman spectroscopy and X-ray photoelectron spectroscopy, we characterize the contact interface to correlate the observed electrical trend with physical characterization of the contact interface.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72736105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信