V. Mootheri, A. Minj, G. Arutchelvan, A. Leonhardt, I. Asselberghs, M. Heyns, I. Radu, D. Lin
{"title":"石墨烯接触MoS2 fet的接触界面表征","authors":"V. Mootheri, A. Minj, G. Arutchelvan, A. Leonhardt, I. Asselberghs, M. Heyns, I. Radu, D. Lin","doi":"10.1109/IITC51362.2021.9537337","DOIUrl":null,"url":null,"abstract":"Graphene based 2D electrical contacts have been proposed to mitigate the contact resistance bottleneck in 2D material based transistors. In this work, we present a detailed analysis of Ru-graphene and Ni-graphene contacts to 2.1nm thick CVD MoS2, which show a contact resistance of 9.34 kΩ – μm and 17.1 kΩ – μm, respectively. We report a novel physical characterization strategy to characterize the MoS2-contact interface by inverting the MoS2 devices, exposing the contact interface. Using Raman spectroscopy and X-ray photoelectron spectroscopy, we characterize the contact interface to correlate the observed electrical trend with physical characterization of the contact interface.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":"7 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contact Interface Characterization of Graphene contacted MoS2 FETs\",\"authors\":\"V. Mootheri, A. Minj, G. Arutchelvan, A. Leonhardt, I. Asselberghs, M. Heyns, I. Radu, D. Lin\",\"doi\":\"10.1109/IITC51362.2021.9537337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene based 2D electrical contacts have been proposed to mitigate the contact resistance bottleneck in 2D material based transistors. In this work, we present a detailed analysis of Ru-graphene and Ni-graphene contacts to 2.1nm thick CVD MoS2, which show a contact resistance of 9.34 kΩ – μm and 17.1 kΩ – μm, respectively. We report a novel physical characterization strategy to characterize the MoS2-contact interface by inverting the MoS2 devices, exposing the contact interface. Using Raman spectroscopy and X-ray photoelectron spectroscopy, we characterize the contact interface to correlate the observed electrical trend with physical characterization of the contact interface.\",\"PeriodicalId\":6823,\"journal\":{\"name\":\"2021 IEEE International Interconnect Technology Conference (IITC)\",\"volume\":\"7 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Interconnect Technology Conference (IITC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IITC51362.2021.9537337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Interconnect Technology Conference (IITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC51362.2021.9537337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Contact Interface Characterization of Graphene contacted MoS2 FETs
Graphene based 2D electrical contacts have been proposed to mitigate the contact resistance bottleneck in 2D material based transistors. In this work, we present a detailed analysis of Ru-graphene and Ni-graphene contacts to 2.1nm thick CVD MoS2, which show a contact resistance of 9.34 kΩ – μm and 17.1 kΩ – μm, respectively. We report a novel physical characterization strategy to characterize the MoS2-contact interface by inverting the MoS2 devices, exposing the contact interface. Using Raman spectroscopy and X-ray photoelectron spectroscopy, we characterize the contact interface to correlate the observed electrical trend with physical characterization of the contact interface.