{"title":"改进接触合成单层二硫化钼的统计研究","authors":"Aravindh Kumar, A. Tang, H. Wong, K. Saraswat","doi":"10.1109/IITC51362.2021.9537515","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) semiconductors are promising candidates for scaled transistors because they are immune to mobility degradation at the monolayer limit. However, sub-10 nm scaling of 2D semiconductors, such as MoS2, is limited by the contact resistance. In this work, we show for the first time a statistical study of Au contacts to chemical vapor deposited monolayer MoS2 using transmission line model (TLM) structures, before and after dielectric encapsulation. We report contact resistance values as low as 330 ohm-um, which is the lowest value reported to date. We further study the effect of Al2O3 encapsulation on variability in contact resistance and other device metrics. Finally, we note some deviations in the TLM model for short-channel devices in the back-gated configuration and discuss possible modifications to improve the model accuracy.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":"os-48 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improved Contacts to Synthetic Monolayer MoS2 – A Statistical Study\",\"authors\":\"Aravindh Kumar, A. Tang, H. Wong, K. Saraswat\",\"doi\":\"10.1109/IITC51362.2021.9537515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-dimensional (2D) semiconductors are promising candidates for scaled transistors because they are immune to mobility degradation at the monolayer limit. However, sub-10 nm scaling of 2D semiconductors, such as MoS2, is limited by the contact resistance. In this work, we show for the first time a statistical study of Au contacts to chemical vapor deposited monolayer MoS2 using transmission line model (TLM) structures, before and after dielectric encapsulation. We report contact resistance values as low as 330 ohm-um, which is the lowest value reported to date. We further study the effect of Al2O3 encapsulation on variability in contact resistance and other device metrics. Finally, we note some deviations in the TLM model for short-channel devices in the back-gated configuration and discuss possible modifications to improve the model accuracy.\",\"PeriodicalId\":6823,\"journal\":{\"name\":\"2021 IEEE International Interconnect Technology Conference (IITC)\",\"volume\":\"os-48 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Interconnect Technology Conference (IITC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IITC51362.2021.9537515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Interconnect Technology Conference (IITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC51362.2021.9537515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved Contacts to Synthetic Monolayer MoS2 – A Statistical Study
Two-dimensional (2D) semiconductors are promising candidates for scaled transistors because they are immune to mobility degradation at the monolayer limit. However, sub-10 nm scaling of 2D semiconductors, such as MoS2, is limited by the contact resistance. In this work, we show for the first time a statistical study of Au contacts to chemical vapor deposited monolayer MoS2 using transmission line model (TLM) structures, before and after dielectric encapsulation. We report contact resistance values as low as 330 ohm-um, which is the lowest value reported to date. We further study the effect of Al2O3 encapsulation on variability in contact resistance and other device metrics. Finally, we note some deviations in the TLM model for short-channel devices in the back-gated configuration and discuss possible modifications to improve the model accuracy.