Journal of Combinatorial Theory Series B最新文献

筛选
英文 中文
Cumulant expansion for counting Eulerian orientations
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2025-01-24 DOI: 10.1016/j.jctb.2025.01.002
Mikhail Isaev , Brendan D. McKay , Rui-Ray Zhang
{"title":"Cumulant expansion for counting Eulerian orientations","authors":"Mikhail Isaev ,&nbsp;Brendan D. McKay ,&nbsp;Rui-Ray Zhang","doi":"10.1016/j.jctb.2025.01.002","DOIUrl":"10.1016/j.jctb.2025.01.002","url":null,"abstract":"<div><div>An Eulerian orientation is an orientation of the edges of a graph such that every vertex is balanced: its in-degree equals its out-degree. Counting Eulerian orientations corresponds to the crucial partition function in so-called “ice-type models” in statistical physics and is known to be hard for general graphs. For all graphs with good expansion properties and degrees larger than <span><math><msup><mrow><mi>log</mi></mrow><mrow><mn>8</mn></mrow></msup><mo>⁡</mo><mi>n</mi></math></span>, we derive an asymptotic expansion for this count that approximates it to precision <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>c</mi></mrow></msup><mo>)</mo></math></span> for arbitrarily large <em>c</em>, where <em>n</em> is the number of vertices. The proof relies on a new tail bound for the cumulant expansion of the Laplace transform, which is of independent interest.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"172 ","pages":"Pages 263-314"},"PeriodicalIF":1.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143092871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward a density Corrádi–Hajnal theorem for degenerate hypergraphs
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2025-01-23 DOI: 10.1016/j.jctb.2025.01.001
Jianfeng Hou , Caiyun Hu , Heng Li , Xizhi Liu , Caihong Yang , Yixiao Zhang
{"title":"Toward a density Corrádi–Hajnal theorem for degenerate hypergraphs","authors":"Jianfeng Hou ,&nbsp;Caiyun Hu ,&nbsp;Heng Li ,&nbsp;Xizhi Liu ,&nbsp;Caihong Yang ,&nbsp;Yixiao Zhang","doi":"10.1016/j.jctb.2025.01.001","DOIUrl":"10.1016/j.jctb.2025.01.001","url":null,"abstract":"<div><div>Given an <em>r</em>-graph <em>F</em> with <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span>, let <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>F</mi><mo>)</mo></math></span> denote the maximum number of edges in an <em>n</em>-vertex <em>r</em>-graph with at most <em>t</em> pairwise vertex-disjoint copies of <em>F</em>. Extending several old results and complementing prior work <span><span>[34]</span></span> on nondegenerate hypergraphs, we initiate a systematic study on <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>F</mi><mo>)</mo></math></span> for degenerate hypergraphs <em>F</em>.</div><div>For a broad class of degenerate hypergraphs <em>F</em>, we present near-optimal upper bounds for <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>F</mi><mo>)</mo></math></span> when <em>n</em> is sufficiently large and <em>t</em> lies in intervals <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mi>ε</mi><mo>⋅</mo><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow><mrow><msup><mrow><mi>n</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>]</mo></math></span>, <span><math><mo>[</mo><mfrac><mrow><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow><mrow><mi>ε</mi><msup><mrow><mi>n</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>,</mo><mi>ε</mi><mi>n</mi><mo>]</mo></math></span>, and <span><math><mo>[</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>ε</mi><mo>)</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mi>v</mi><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mi>v</mi><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mfrac><mo>]</mo></math></span>, where <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> is a constant depending only on <em>F</em>. Our results reveal very different structures for extremal constructions across the three intervals, and we provide characterizations of extremal constructions within the first interval. Additionally, we characterize extremal constructions within the second interval for graphs. Our proof for the first interval also applies to a special class of nondegenerate hypergraphs, including those with undetermined Turán densities, partially improving a result in <span><span>[34]</span></span>.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"172 ","pages":"Pages 221-262"},"PeriodicalIF":1.2,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143092870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The next case of Andrásfai's conjecture
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2025-01-14 DOI: 10.1016/j.jctb.2024.12.010
Tomasz Łuczak , Joanna Polcyn , Christian Reiher
{"title":"The next case of Andrásfai's conjecture","authors":"Tomasz Łuczak ,&nbsp;Joanna Polcyn ,&nbsp;Christian Reiher","doi":"10.1016/j.jctb.2024.12.010","DOIUrl":"10.1016/j.jctb.2024.12.010","url":null,"abstract":"<div><div>Let <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>s</mi><mo>)</mo></math></span> denote the maximum number of edges in a triangle-free graph on <em>n</em> vertices which contains no independent sets larger than <em>s</em>. The behaviour of <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>s</mi><mo>)</mo></math></span> was first studied by Andrásfai, who conjectured that for <span><math><mi>s</mi><mo>&gt;</mo><mi>n</mi><mo>/</mo><mn>3</mn></math></span> this function is determined by appropriately chosen blow-ups of so called Andrásfai graphs. Moreover, he proved <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>s</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>4</mn><mi>n</mi><mi>s</mi><mo>+</mo><mn>5</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for <span><math><mi>s</mi><mo>/</mo><mi>n</mi><mo>∈</mo><mo>[</mo><mn>2</mn><mo>/</mo><mn>5</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>]</mo></math></span> and in earlier work we obtained <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>s</mi><mo>)</mo><mo>=</mo><mn>3</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>15</mn><mi>n</mi><mi>s</mi><mo>+</mo><mn>20</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for <span><math><mi>s</mi><mo>/</mo><mi>n</mi><mo>∈</mo><mo>[</mo><mn>3</mn><mo>/</mo><mn>8</mn><mo>,</mo><mn>2</mn><mo>/</mo><mn>5</mn><mo>]</mo></math></span>. Here we make the next step in the quest to settle Andrásfai's conjecture by proving <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>s</mi><mo>)</mo><mo>=</mo><mn>6</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>32</mn><mi>n</mi><mi>s</mi><mo>+</mo><mn>44</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for <span><math><mi>s</mi><mo>/</mo><mi>n</mi><mo>∈</mo><mo>[</mo><mn>4</mn><mo>/</mo><mn>11</mn><mo>,</mo><mn>3</mn><mo>/</mo><mn>8</mn><mo>]</mo></math></span>.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"172 ","pages":"Pages 198-220"},"PeriodicalIF":1.2,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143092869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weak saturation in graphs: A combinatorial approach
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2025-01-13 DOI: 10.1016/j.jctb.2024.12.007
Nikolai Terekhov , Maksim Zhukovskii
{"title":"Weak saturation in graphs: A combinatorial approach","authors":"Nikolai Terekhov ,&nbsp;Maksim Zhukovskii","doi":"10.1016/j.jctb.2024.12.007","DOIUrl":"10.1016/j.jctb.2024.12.007","url":null,"abstract":"<div><div>The weak saturation number <span><math><mrow><mi>wsat</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> is the minimum number of edges in a graph on <em>n</em> vertices such that all the missing edges can be activated sequentially so that each new edge creates a copy of <em>F</em>. In contrast to previous algebraic approaches, we present a new combinatorial approach to prove lower bounds for weak saturation numbers that allows to establish worst-case tight (up to constant additive terms) general lower bounds as well as to get exact values of the weak saturation numbers for certain graph families. It is known (Alon, 1985) that, for every <em>F</em>, there exists <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> such that <span><math><mrow><mi>wsat</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>F</mi></mrow></msub><mi>n</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo></math></span>. Our lower bounds imply that all values in the interval <span><math><mo>[</mo><mfrac><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>δ</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>,</mo><mi>δ</mi><mo>−</mo><mn>1</mn><mo>]</mo></math></span> with step size <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>δ</mi><mo>+</mo><mn>1</mn></mrow></mfrac></math></span> are achievable by <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> for graphs <em>F</em> with minimum degree <em>δ</em> (while any value outside this interval is not achievable).</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"172 ","pages":"Pages 146-167"},"PeriodicalIF":1.2,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143127971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kővári-Sós-Turán theorem for hereditary families
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2025-01-13 DOI: 10.1016/j.jctb.2024.12.009
Zach Hunter , Aleksa Milojević , Benny Sudakov , István Tomon
{"title":"Kővári-Sós-Turán theorem for hereditary families","authors":"Zach Hunter ,&nbsp;Aleksa Milojević ,&nbsp;Benny Sudakov ,&nbsp;István Tomon","doi":"10.1016/j.jctb.2024.12.009","DOIUrl":"10.1016/j.jctb.2024.12.009","url":null,"abstract":"<div><div>The celebrated Kővári-Sós-Turán theorem states that any <em>n</em>-vertex graph containing no copy of the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span> has at most <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>s</mi></mrow></msup><mo>)</mo></math></span> edges. In the past two decades, motivated by the applications in discrete geometry and structural graph theory, a number of results demonstrated that this bound can be greatly improved if the graph satisfies certain structural restrictions. We propose the systematic study of this phenomenon, and state the conjecture that if <em>H</em> is a bipartite graph, then an induced <em>H</em>-free and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span>-free graph cannot have much more edges than an <em>H</em>-free graph. We provide evidence for this conjecture by considering trees, cycles, the cube graph, and bipartite graphs with degrees bounded by <em>k</em> on one side, obtaining in all the cases similar bounds as in the non-induced setting. Our results also have applications to the Erdős-Hajnal conjecture, the problem of finding induced <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free subgraphs with large degree and bounding the average degree of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span>-free graphs which do not contain induced subdivisions of a fixed graph.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"172 ","pages":"Pages 168-197"},"PeriodicalIF":1.2,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143092868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A half-integral Erdős-Pósa theorem for directed odd cycles
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2025-01-07 DOI: 10.1016/j.jctb.2024.12.008
Ken-ichi Kawarabayashi , Stephan Kreutzer , O-joung Kwon , Qiqin Xie
{"title":"A half-integral Erdős-Pósa theorem for directed odd cycles","authors":"Ken-ichi Kawarabayashi ,&nbsp;Stephan Kreutzer ,&nbsp;O-joung Kwon ,&nbsp;Qiqin Xie","doi":"10.1016/j.jctb.2024.12.008","DOIUrl":"10.1016/j.jctb.2024.12.008","url":null,"abstract":"<div><div>We prove that there exists a function <span><math><mi>f</mi><mo>:</mo><mi>N</mi><mo>→</mo><mi>R</mi></math></span> such that every directed graph <em>G</em> contains either <em>k</em> directed odd cycles where every vertex of <em>G</em> is contained in at most two of them, or a set of at most <span><math><mi>f</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span> vertices meeting all directed odd cycles. We give a polynomial-time algorithm for fixed <em>k</em> which outputs one of the two outcomes. This extends the half-integral Erdős-Pósa theorem for undirected odd cycles by Reed [Combinatorica 1999] to directed graphs.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"172 ","pages":"Pages 115-145"},"PeriodicalIF":1.2,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143092867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the automorphism group of a distance-regular graph
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-12-31 DOI: 10.1016/j.jctb.2024.12.005
László Pyber , Saveliy V. Skresanov
{"title":"On the automorphism group of a distance-regular graph","authors":"László Pyber ,&nbsp;Saveliy V. Skresanov","doi":"10.1016/j.jctb.2024.12.005","DOIUrl":"10.1016/j.jctb.2024.12.005","url":null,"abstract":"<div><div>The motion of a graph is the minimal degree of its full automorphism group. Babai conjectured that the motion of a primitive distance-regular graph on <em>n</em> vertices of diameter greater than two is at least <span><math><mi>n</mi><mo>/</mo><mi>C</mi></math></span> for some universal constant <span><math><mi>C</mi><mo>&gt;</mo><mn>0</mn></math></span>, unless the graph is a Johnson or Hamming graph. We prove that the motion of a distance-regular graph of diameter <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span> on <em>n</em> vertices is at least <span><math><mi>C</mi><mi>n</mi><mo>/</mo><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></mrow><mrow><mn>6</mn></mrow></msup></math></span> for some universal constant <span><math><mi>C</mi><mo>&gt;</mo><mn>0</mn></math></span>, unless it is a Johnson, Hamming or crown graph. To show this, we improve an earlier result by Kivva who gave a lower bound on motion of the form <span><math><mi>n</mi><mo>/</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span>, where <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> depends exponentially on <em>d</em>. As a corollary we derive a quasipolynomial upper bound for the size of the automorphism group of a primitive distance-regular graph acting edge-transitively on the graph and on its distance-2 graph. The proofs use elementary combinatorial arguments and do not depend on the classification of finite simple groups.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"172 ","pages":"Pages 94-114"},"PeriodicalIF":1.2,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143092866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aharoni's rainbow cycle conjecture holds up to an additive constant
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-12-30 DOI: 10.1016/j.jctb.2024.12.004
Patrick Hompe, Tony Huynh
{"title":"Aharoni's rainbow cycle conjecture holds up to an additive constant","authors":"Patrick Hompe,&nbsp;Tony Huynh","doi":"10.1016/j.jctb.2024.12.004","DOIUrl":"10.1016/j.jctb.2024.12.004","url":null,"abstract":"<div><div>In 2017, Aharoni proposed the following generalization of the Caccetta-Häggkvist conjecture: if <em>G</em> is a simple <em>n</em>-vertex edge-colored graph with <em>n</em> color classes of size at least <em>r</em>, then <em>G</em> contains a rainbow cycle of length at most <span><math><mo>⌈</mo><mi>n</mi><mo>/</mo><mi>r</mi><mo>⌉</mo></math></span>.</div><div>In this paper, we prove that, for fixed <em>r</em>, Aharoni's conjecture holds up to an additive constant. Specifically, we show that for each fixed <span><math><mi>r</mi><mo>⩾</mo><mn>1</mn></math></span>, there exists a constant <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>∈</mo><mi>O</mi><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>5</mn></mrow></msup><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>⁡</mo><mi>r</mi><mo>)</mo></math></span> such that if <em>G</em> is a simple <em>n</em>-vertex edge-colored graph with <em>n</em> color classes of size at least <em>r</em>, then <em>G</em> contains a rainbow cycle of length at most <span><math><mi>n</mi><mo>/</mo><mi>r</mi><mo>+</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"172 ","pages":"Pages 80-93"},"PeriodicalIF":1.2,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143092865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Slow graph bootstrap percolation II: Accelerating properties
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-12-27 DOI: 10.1016/j.jctb.2024.12.006
David Fabian , Patrick Morris , Tibor Szabó
{"title":"Slow graph bootstrap percolation II: Accelerating properties","authors":"David Fabian ,&nbsp;Patrick Morris ,&nbsp;Tibor Szabó","doi":"10.1016/j.jctb.2024.12.006","DOIUrl":"10.1016/j.jctb.2024.12.006","url":null,"abstract":"<div><div>For a graph <em>H</em> and an <em>n</em>-vertex graph <em>G</em>, the <em>H</em>-bootstrap process on <em>G</em> is the process which starts with <em>G</em> and, at every time step, adds any missing edges on the vertices of <em>G</em> that complete a copy of <em>H</em>. This process eventually stabilises and we are interested in the extremal question raised by Bollobás of determining the maximum <em>running time</em> (number of time steps before stabilising) of this process over all possible choices of <em>n</em>-vertex graph <em>G</em>. In this paper, we initiate a systematic study of the asymptotics of this parameter, denoted <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, and its dependence on properties of the graph <em>H</em>. Our focus is on <em>H</em> which define relatively fast bootstrap processes, that is, with <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> being at most linear in <em>n</em>. We study the graph class of trees, showing that one can bound <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> by a quadratic function in <span><math><mi>v</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> for all trees <em>T</em> and all <em>n</em>. We then go on to explore the relationship between the running time of the <em>H</em>-process and the minimum vertex degree and connectivity of <em>H</em>.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"172 ","pages":"Pages 44-79"},"PeriodicalIF":1.2,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143127972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unexpected automorphisms in direct product graphs 直积图中的意外自同构
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-12-19 DOI: 10.1016/j.jctb.2024.12.003
Yunsong Gan , Weijun Liu , Binzhou Xia
{"title":"Unexpected automorphisms in direct product graphs","authors":"Yunsong Gan ,&nbsp;Weijun Liu ,&nbsp;Binzhou Xia","doi":"10.1016/j.jctb.2024.12.003","DOIUrl":"10.1016/j.jctb.2024.12.003","url":null,"abstract":"<div><div>A pair of graphs <span><math><mo>(</mo><mi>Γ</mi><mo>,</mo><mi>Σ</mi><mo>)</mo></math></span> is called unstable if their direct product <span><math><mi>Γ</mi><mo>×</mo><mi>Σ</mi></math></span> has automorphisms that do not come from <span><math><mtext>Aut</mtext><mo>(</mo><mi>Γ</mi><mo>)</mo><mo>×</mo><mtext>Aut</mtext><mo>(</mo><mi>Σ</mi><mo>)</mo></math></span>, and such automorphisms are said to be unexpected. In the special case when <span><math><mi>Σ</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, the stability of <span><math><mo>(</mo><mi>Γ</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> is well studied in the literature, where the so-called two-fold automorphisms of the graph Γ have played an important role. As a generalization of two-fold automorphisms, the concept of non-diagonal automorphisms was recently introduced to study the stability of general graph pairs. In this paper, we obtain, for a large family of graph pairs, a necessary and sufficient condition to be unstable in terms of the existence of non-diagonal automorphisms. As a byproduct, we determine the stability of graph pairs involving complete graphs or odd cycles, respectively. The former result in fact solves a problem proposed by Dobson, Miklavič and Šparl for undirected graphs, as well as confirms a recent conjecture of Qin, Xia and Zhou.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"171 ","pages":"Pages 140-164"},"PeriodicalIF":1.2,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信