Journal of Combinatorial Theory Series B最新文献

筛选
英文 中文
Degree-truncated choosability of graphs 图的度截断选择能力
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2025-07-18 DOI: 10.1016/j.jctb.2025.07.003
Huan Zhou, Jialu Zhu, Xuding Zhu
{"title":"Degree-truncated choosability of graphs","authors":"Huan Zhou,&nbsp;Jialu Zhu,&nbsp;Xuding Zhu","doi":"10.1016/j.jctb.2025.07.003","DOIUrl":"10.1016/j.jctb.2025.07.003","url":null,"abstract":"<div><div>A graph <em>G</em> is called degree-truncated <em>k</em>-choosable if for every list assignment <em>L</em> with <span><math><mo>|</mo><mi>L</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span> for each vertex <em>v</em>, <em>G</em> is <em>L</em>-colourable. Richter asked whether every 3-connected non-complete planar graph is degree-truncated 6-choosable. We answer this question in negative by constructing a 3-connected non-complete planar graph which is not degree-truncated 7-choosable. Then we prove that every 3-connected non-complete planar graph is degree-truncated 16-DP-colourable (and hence degree-truncated 16-choosable). We further prove that for an arbitrary proper minor closed family <span><math><mi>G</mi></math></span> of graphs, let <em>s</em> be the minimum integer such that <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>∉</mo><mi>G</mi></math></span> for some <em>t</em>, then there is a constant <em>k</em> such that every <em>s</em>-connected graph <span><math><mi>G</mi><mo>∈</mo><mi>G</mi></math></span> other than a GDP tree is degree-truncated DP-<em>k</em>-colourable (and hence degree-truncated <em>k</em>-choosable), where a GDP-tree is a graph whose blocks are complete graphs or cycles. In particular, for any surface Σ, there is a constant <em>k</em> such that every 3-connected non-complete graph embeddable on Σ is degree-truncated DP-<em>k</em>-colourable (and hence degree-truncated <em>k</em>-choosable). The <em>s</em>-connectedness for graphs in <span><math><mi>G</mi></math></span> (and 3-connectedness for graphs embeddable on Σ) is necessary, as for any positive integer <em>k</em>, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn><mo>,</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></msub><mo>∈</mo><mi>G</mi></math></span> (<span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mo>,</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> is planar) is not degree-truncated <em>k</em>-choosable. Also, non-completeness is a necessary condition, as complete graphs are not degree-choosable.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"175 ","pages":"Pages 171-186"},"PeriodicalIF":1.2,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144654393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rigid partitions: From high connectivity to random graphs 刚性分区:从高连通性到随机图
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2025-07-18 DOI: 10.1016/j.jctb.2025.07.001
Michael Krivelevich , Alan Lew , Peleg Michaeli
{"title":"Rigid partitions: From high connectivity to random graphs","authors":"Michael Krivelevich ,&nbsp;Alan Lew ,&nbsp;Peleg Michaeli","doi":"10.1016/j.jctb.2025.07.001","DOIUrl":"10.1016/j.jctb.2025.07.001","url":null,"abstract":"<div><div>A graph is called <em>d</em>-rigid if there exists a generic embedding of its vertex set into <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> such that every continuous motion of the vertices that preserves the lengths of all edges actually preserves the distances between all pairs of vertices. The rigidity of a graph is the maximal <em>d</em> such that the graph is <em>d</em>-rigid. We present new sufficient conditions for the <em>d</em>-rigidity of a graph in terms of the existence of “rigid partitions”—partitions of the graph that satisfy certain connectivity properties. This extends previous results by Crapo, Lindemann, and Lew, Nevo, Peled and Raz.</div><div>As an application, we present new results on the rigidity of highly-connected graphs, random graphs, random bipartite graphs, pseudorandom graphs, and dense graphs. In particular, we prove that random <span><math><mi>C</mi><mi>d</mi><mi>log</mi><mo>⁡</mo><mi>d</mi></math></span>-regular graphs are typically <em>d</em>-rigid, demonstrate the existence of a giant <em>d</em>-rigid component in sparse random binomial graphs, and show that the rigidity of relatively sparse random binomial bipartite graphs is roughly the same as that of the complete bipartite graph, which we consider an interesting phenomenon. Furthermore, we show that a graph admitting <span><math><mo>(</mo><mtable><mtr><mtd><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></math></span> disjoint connected dominating sets is <em>d</em>-rigid. This implies a weak version of the Lovász–Yemini conjecture on the rigidity of highly-connected graphs. We also present an alternative short proof for a recent result by Lew, Nevo, Peled, and Raz, which asserts that the hitting time for <em>d</em>-rigidity in the random graph process typically coincides with the hitting time for minimum degree <em>d</em>.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"175 ","pages":"Pages 126-170"},"PeriodicalIF":1.2,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144654392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast algorithms for Vizing's theorem on bounded degree graphs 有界度图上Vizing定理的快速算法
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2025-07-17 DOI: 10.1016/j.jctb.2025.07.002
Anton Bernshteyn , Abhishek Dhawan
{"title":"Fast algorithms for Vizing's theorem on bounded degree graphs","authors":"Anton Bernshteyn ,&nbsp;Abhishek Dhawan","doi":"10.1016/j.jctb.2025.07.002","DOIUrl":"10.1016/j.jctb.2025.07.002","url":null,"abstract":"<div><div>Vizing's theorem states that every graph <em>G</em> of maximum degree Δ can be properly edge-colored using <span><math><mi>Δ</mi><mo>+</mo><mn>1</mn></math></span> colors. The fastest currently known <span><math><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-edge-coloring algorithm for general graphs is due to Sinnamon and runs in time <span><math><mi>O</mi><mo>(</mo><mi>m</mi><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>)</mo></math></span>, where <span><math><mi>n</mi><mo>≔</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></math></span> and <span><math><mi>m</mi><mo>≔</mo><mo>|</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></math></span>. We investigate the case when Δ is constant, i.e., <span><math><mi>Δ</mi><mo>=</mo><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>. In this regime, the runtime of Sinnamon's algorithm is <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></math></span>, which can be improved to <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>, as shown by Gabow, Nishizeki, Kariv, Leven, and Terada. Here we give an algorithm whose running time is only <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, which is obviously best possible. Prior to this work, no linear-time <span><math><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-edge-coloring algorithm was known for any <span><math><mi>Δ</mi><mo>⩾</mo><mn>4</mn></math></span>. Using some of the same ideas, we also develop new algorithms for <span><math><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-edge-coloring in the <span><math><mi>LOCAL</mi></math></span> model of distributed computation. Namely, when Δ is constant, we design a deterministic <span><math><mi>LOCAL</mi></math></span> algorithm with running time <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msup><mrow><mi>log</mi></mrow><mrow><mn>5</mn></mrow></msup><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> and a randomized <span><math><mi>LOCAL</mi></math></span> algorithm with running time <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>. Although our focus is on the constant Δ regime, our results remain interesting for Δ up to <span><math><msup><mrow><mi>log</mi></mrow><mrow><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>⁡</mo><mi>n</mi></math></span>, since the dependence of their running time on Δ is polynomial. The key new ingredient in our algorithms is a novel application of the entropy compression method.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"175 ","pages":"Pages 69-125"},"PeriodicalIF":1.2,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144654391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Connectoids I: A universal end space theory 连通线I:一个普适的端空间理论
IF 1.4 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2025-06-27 DOI: 10.1016/j.jctb.2025.06.003
Nathan Bowler, Florian Reich
{"title":"Connectoids I: A universal end space theory","authors":"Nathan Bowler, Florian Reich","doi":"10.1016/j.jctb.2025.06.003","DOIUrl":"https://doi.org/10.1016/j.jctb.2025.06.003","url":null,"abstract":"In this series we introduce and investigate the concept of <ce:italic>connectoids</ce:italic>, which captures the connectivity structure of various discrete objects like undirected graphs, directed graphs, bidirected graphs, hypergraphs or finitary matroids.","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"27 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144515440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperbolicity theorems for correspondence colouring 对应着色的双曲性定理
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2025-06-20 DOI: 10.1016/j.jctb.2025.06.002
Luke Postle , Evelyne Smith-Roberge
{"title":"Hyperbolicity theorems for correspondence colouring","authors":"Luke Postle ,&nbsp;Evelyne Smith-Roberge","doi":"10.1016/j.jctb.2025.06.002","DOIUrl":"10.1016/j.jctb.2025.06.002","url":null,"abstract":"<div><div>We generalize a framework of list colouring results to <em>correspondence colouring</em>. Correspondence colouring is a generalization of list colouring wherein we localize the meaning of the colours available to each vertex. As pointed out by Dvořák and Postle, both of Thomassen's theorems on the 5-choosability of planar graphs and 3-choosability of planar graphs of girth at least five carry over to the correspondence colouring setting. In this paper, we show that the family of graphs that are critical for 5-correspondence colouring as well as the family of graphs of girth at least five that are critical for 3-correspondence colouring form <em>hyperbolic families</em>. Analogous results for list colouring were shown by Postle and Thomas and by Dvořák and Kawarabayashi, respectively. Using results on hyperbolic families due to Postle and Thomas, we show that this implies that there exists a universal constant <em>c</em> such that if Σ is a surface of Euler genus <em>g</em>, every graph of edge-width at least <span><math><mi>c</mi><mo>⋅</mo><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>g</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> embedded in Σ is 5-correspondence colourable. This is asymptotically best possible, and improves upon the best known edge-width bound due to Kim, Kostochka, Li, and Zhu. Using results of Dvořák and Kawarabayashi, we show further that there exist linear-time algorithms for the decidability of 5-correspondence colouring for embedded graphs. We show analogous results for 3-correspondence colouring graphs of girth at least five.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"175 ","pages":"Pages 29-68"},"PeriodicalIF":1.2,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144321732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-degenerate hypergraphs with exponentially many extremal constructions 具有指数多极值结构的非退化超图
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2025-06-13 DOI: 10.1016/j.jctb.2025.06.001
József Balogh , Felix Christian Clemen , Haoran Luo
{"title":"Non-degenerate hypergraphs with exponentially many extremal constructions","authors":"József Balogh ,&nbsp;Felix Christian Clemen ,&nbsp;Haoran Luo","doi":"10.1016/j.jctb.2025.06.001","DOIUrl":"10.1016/j.jctb.2025.06.001","url":null,"abstract":"<div><div>For every integer <span><math><mi>t</mi><mo>⩾</mo><mn>0</mn></math></span>, denote by <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span> the hypergraph on vertex set <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>5</mn><mo>+</mo><mi>t</mi><mo>}</mo></math></span> with hyperedges <span><math><mo>{</mo><mn>123</mn><mo>,</mo><mn>124</mn><mo>}</mo><mo>∪</mo><mo>{</mo><mn>34</mn><mi>k</mi><mo>:</mo><mn>5</mn><mo>⩽</mo><mi>k</mi><mo>⩽</mo><mn>5</mn><mo>+</mo><mi>t</mi><mo>}</mo></math></span>. We determine <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>t</mi></mrow></msubsup><mo>)</mo></math></span> for every <span><math><mi>t</mi><mo>⩾</mo><mn>0</mn></math></span> and sufficiently large <em>n</em> and characterize the extremal <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span>-free hypergraphs. In particular, if <em>n</em> satisfies certain divisibility conditions, then the extremal <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span>-free hypergraphs are exactly the balanced complete tripartite hypergraphs with additional hyperedges inside each of the three parts <span><math><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> in the partition; each part <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> spans a <span><math><mo>(</mo><mo>|</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>,</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-design. This generalizes earlier work of Frankl and Füredi on the Turán number of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>:</mo><mo>=</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mn>0</mn></mrow></msubsup></math></span>.</div><div>Our results extend a theory of Erdős and Simonovits about the extremal constructions for certain fixed graphs. In particular, the hypergraphs <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mn>6</mn><mi>t</mi></mrow></msubsup></math></span>, for <span><math><mi>t</mi><mo>⩾</mo><mn>1</mn></math></span>, are the first examples of hypergraphs with exponentially many extremal constructions and positive Turán density.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"175 ","pages":"Pages 1-28"},"PeriodicalIF":1.2,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144279191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Keevash-Knox-Mycroft conjecture 基瓦什-诺克斯-麦考夫猜想
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2025-05-28 DOI: 10.1016/j.jctb.2025.05.003
Luyining Gan , Jie Han
{"title":"On the Keevash-Knox-Mycroft conjecture","authors":"Luyining Gan ,&nbsp;Jie Han","doi":"10.1016/j.jctb.2025.05.003","DOIUrl":"10.1016/j.jctb.2025.05.003","url":null,"abstract":"<div><div>Given <span><math><mn>1</mn><mo>≤</mo><mi>ℓ</mi><mo>&lt;</mo><mi>k</mi></math></span> and <span><math><mi>δ</mi><mo>≥</mo><mn>0</mn></math></span>, let <span><math><mtext>PM</mtext><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span> be the decision problem for the existence of perfect matchings in <em>n</em>-vertex <em>k</em>-uniform hypergraphs with minimum <em>ℓ</em>-degree at least <span><math><mi>δ</mi><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mi>ℓ</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>−</mo><mi>ℓ</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow></math></span>. For <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mtext>PM</mtext><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mn>0</mn><mo>)</mo></math></span> was one of the first NP-complete problems by Karp. Keevash, Knox and Mycroft conjectured that <span><math><mtext>PM</mtext><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span> is in P for every <span><math><mi>δ</mi><mo>&gt;</mo><mn>1</mn><mo>−</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>k</mi><mo>)</mo></mrow><mrow><mi>k</mi><mo>−</mo><mi>ℓ</mi></mrow></msup></math></span> and verified the case <span><math><mi>ℓ</mi><mo>=</mo><mi>k</mi><mo>−</mo><mn>1</mn></math></span>.</div><div>In this paper we show that this problem can be reduced to the study of the minimum <em>ℓ</em>-degree condition forcing the existence of fractional perfect matchings. Together with existing results on fractional perfect matchings, this solves the conjecture of Keevash, Knox and Mycroft for <span><math><mi>ℓ</mi><mo>≥</mo><mn>0.4</mn><mi>k</mi></math></span>. Moreover, we also supply an algorithm that outputs a perfect matching, provided that one exists.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"174 ","pages":"Pages 214-242"},"PeriodicalIF":1.2,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144154896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The 1-2 conjecture holds for regular graphs 1-2猜想适用于正则图
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2025-05-19 DOI: 10.1016/j.jctb.2025.05.002
Kecai Deng , Hongyuan Qiu
{"title":"The 1-2 conjecture holds for regular graphs","authors":"Kecai Deng ,&nbsp;Hongyuan Qiu","doi":"10.1016/j.jctb.2025.05.002","DOIUrl":"10.1016/j.jctb.2025.05.002","url":null,"abstract":"<div><div>The 1-2 conjecture asserts that the vertices and edges of every graph can be assigned with weights in <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></math></span> such that adjacent vertices receive distinct weighted degrees. While this conjecture remains open in general, it has been proven that it is possible to achieve this using the weight set <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>}</mo></math></span>. We demonstrate that the weight set <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span> suffices for every graph. As a corollary, the 1-2 conjecture is confirmed for regular graphs. Additionally, we verify another related conjecture concerning locally irregular total colouring, for regular graphs.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"174 ","pages":"Pages 207-213"},"PeriodicalIF":1.2,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144084655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Connectivity keeping paths containing prescribed vertices in highly connected triangle-free graphs 在高度连通的无三角形图中保持包含规定顶点的路径的连通性
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2025-05-16 DOI: 10.1016/j.jctb.2025.05.001
Shinya Fujita
{"title":"Connectivity keeping paths containing prescribed vertices in highly connected triangle-free graphs","authors":"Shinya Fujita","doi":"10.1016/j.jctb.2025.05.001","DOIUrl":"10.1016/j.jctb.2025.05.001","url":null,"abstract":"<div><div>Let <span><math><mi>m</mi><mo>,</mo><mi>k</mi></math></span> be integers with <span><math><mi>m</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>≥</mo><mn>2</mn></math></span>. For a <em>k</em>-connected graph <em>G</em>, a subgraph <em>H</em> of <em>G</em> is <em>k-removable</em> if <span><math><mi>G</mi><mo>−</mo><mi>V</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> is still a <em>k</em>-connected graph. A graph is <em>triangle-free</em> if it contains no triangle as a subgraph.</div><div>In this paper, we prove that if <em>G</em> is a <em>k</em>-connected triangle-free graph with minimum degree at least <span><math><mi>k</mi><mo>+</mo><mo>(</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span>, then for any vertex <span><math><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, there exists a path <em>P</em> on <em>m</em> vertices starting from <em>v</em> such that <span><math><mi>G</mi><mo>−</mo><mi>V</mi><mo>(</mo><mi>P</mi><mo>)</mo></math></span> is a <span><math><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-connected graph. This result is obtained by showing a stronger statement concerning the existence of <em>k</em>-removable paths in <em>k</em>-connected triangle-free graphs. We also prove that if <em>G</em> is a <em>k</em>-connected triangle-free graph with minimum degree at least <span><math><mi>k</mi><mo>+</mo><mn>1</mn></math></span>, then <em>G</em> contains a <em>k</em>-removable edge. Our results confirm a conjecture due to Luo et al. concerning the existence of a <em>k</em>-removable path on <em>m</em> vertices in a <em>k</em>-connected bipartite graph for all odd <em>m</em> together with the case <span><math><mi>m</mi><mo>=</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"174 ","pages":"Pages 190-206"},"PeriodicalIF":1.2,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144068351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A structure theorem for pseudosegments and its applications 伪段的一个结构定理及其应用
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2025-05-06 DOI: 10.1016/j.jctb.2025.04.007
Jacob Fox , János Pach , Andrew Suk
{"title":"A structure theorem for pseudosegments and its applications","authors":"Jacob Fox ,&nbsp;János Pach ,&nbsp;Andrew Suk","doi":"10.1016/j.jctb.2025.04.007","DOIUrl":"10.1016/j.jctb.2025.04.007","url":null,"abstract":"<div><div>We prove a far-reaching strengthening of Szemerédi's regularity lemma for intersection graphs of pseudosegments. It shows that the vertex set of such a graph can be partitioned into a bounded number of parts of roughly the same size such that almost all bipartite graphs between different pairs of parts are <em>complete</em> or <em>empty</em>. We use this to get an improved bound on disjoint edges in simple topological graphs, showing that every <em>n</em>-vertex simple topological graph with no <em>k</em> pairwise disjoint edges has at most <span><math><mi>n</mi><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></mrow><mrow><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> edges.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"174 ","pages":"Pages 99-132"},"PeriodicalIF":1.2,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143905987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信