3连通拟阵和简单3连通图中的可分离对

IF 1.2 1区 数学 Q1 MATHEMATICS
Nick Brettell , Charles Semple , Gerry Toft
{"title":"3连通拟阵和简单3连通图中的可分离对","authors":"Nick Brettell ,&nbsp;Charles Semple ,&nbsp;Gerry Toft","doi":"10.1016/j.jctb.2025.09.003","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>M</em> be a 3-connected matroid. A pair <span><math><mo>{</mo><mi>e</mi><mo>,</mo><mi>f</mi><mo>}</mo></math></span> in <em>M</em> is <em>detachable</em> if <span><math><mi>M</mi><mo>﹨</mo><mi>e</mi><mo>﹨</mo><mi>f</mi></math></span> or <span><math><mi>M</mi><mo>/</mo><mi>e</mi><mo>/</mo><mi>f</mi></math></span> is 3-connected. Williams (2015) proved that if <em>M</em> has at least 13 elements, then at least one of the following holds: <em>M</em> has a detachable pair, <em>M</em> has a 3-element circuit or cocircuit, or <em>M</em> is a spike. We address the case where <em>M</em> has a 3-element circuit or cocircuit, to obtain a characterisation of when a matroid with at least 13 elements has a detachable pair. As a consequence, we characterise when a simple 3-connected graph <em>G</em> with <span><math><mo>|</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mn>13</mn></math></span> has a pair of edges <span><math><mo>{</mo><mi>e</mi><mo>,</mo><mi>f</mi><mo>}</mo></math></span> such that <span><math><mi>G</mi><mo>/</mo><mi>e</mi><mo>/</mo><mi>f</mi></math></span> or <span><math><mi>G</mi><mo>﹨</mo><mi>e</mi><mo>﹨</mo><mi>f</mi></math></span> is simple and 3-connected.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"176 ","pages":"Pages 163-240"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detachable pairs in 3-connected matroids and simple 3-connected graphs\",\"authors\":\"Nick Brettell ,&nbsp;Charles Semple ,&nbsp;Gerry Toft\",\"doi\":\"10.1016/j.jctb.2025.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>M</em> be a 3-connected matroid. A pair <span><math><mo>{</mo><mi>e</mi><mo>,</mo><mi>f</mi><mo>}</mo></math></span> in <em>M</em> is <em>detachable</em> if <span><math><mi>M</mi><mo>﹨</mo><mi>e</mi><mo>﹨</mo><mi>f</mi></math></span> or <span><math><mi>M</mi><mo>/</mo><mi>e</mi><mo>/</mo><mi>f</mi></math></span> is 3-connected. Williams (2015) proved that if <em>M</em> has at least 13 elements, then at least one of the following holds: <em>M</em> has a detachable pair, <em>M</em> has a 3-element circuit or cocircuit, or <em>M</em> is a spike. We address the case where <em>M</em> has a 3-element circuit or cocircuit, to obtain a characterisation of when a matroid with at least 13 elements has a detachable pair. As a consequence, we characterise when a simple 3-connected graph <em>G</em> with <span><math><mo>|</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mn>13</mn></math></span> has a pair of edges <span><math><mo>{</mo><mi>e</mi><mo>,</mo><mi>f</mi><mo>}</mo></math></span> such that <span><math><mi>G</mi><mo>/</mo><mi>e</mi><mo>/</mo><mi>f</mi></math></span> or <span><math><mi>G</mi><mo>﹨</mo><mi>e</mi><mo>﹨</mo><mi>f</mi></math></span> is simple and 3-connected.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"176 \",\"pages\":\"Pages 163-240\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895625000711\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000711","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设M是一个3连通的矩阵。如果M\e\f或M/e/f为3连通,则M中的一对{e,f}是可分离的。Williams(2015)证明,如果M至少有13个元件,则M有一个可拆卸的对,M有一个3元电路或共电路,或M是一个尖峰。我们处理M具有3元电路或共电路的情况,以获得具有至少13个单元的矩阵何时具有可拆卸对的特征。因此,我们刻画了当一个|E(G)|≥13的简单3连通图G有一对边{E,f}使得G\ E \f的G/ E /f是简单3连通的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detachable pairs in 3-connected matroids and simple 3-connected graphs
Let M be a 3-connected matroid. A pair {e,f} in M is detachable if Mef or M/e/f is 3-connected. Williams (2015) proved that if M has at least 13 elements, then at least one of the following holds: M has a detachable pair, M has a 3-element circuit or cocircuit, or M is a spike. We address the case where M has a 3-element circuit or cocircuit, to obtain a characterisation of when a matroid with at least 13 elements has a detachable pair. As a consequence, we characterise when a simple 3-connected graph G with |E(G)|13 has a pair of edges {e,f} such that G/e/f or Gef is simple and 3-connected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信