{"title":"受程度限制的随机过程远非一致","authors":"Michael Molloy , Erlang Surya , Lutz Warnke","doi":"10.1016/j.jctb.2025.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>The degree-restricted random process is a natural algorithmic model for generating graphs with degree sequence <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>: starting with an empty <em>n</em>-vertex graph, it sequentially adds new random edges so that the degree of each vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> remains at most <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. Wormald conjectured in 1999 that, for <em>d</em>-regular degree sequences <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the final graph of this process is similar to a uniform random <em>d</em>-regular graph.</div><div>In this paper we show that, for degree sequences <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> that are not nearly regular, the final graph of the degree-restricted random process differs substantially from a uniform random graph with degree sequence <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. The combinatorial proof technique is our main conceptual contribution: we adapt the switching method to the degree-restricted process, demonstrating that this enumeration technique can also be used to analyze stochastic processes (rather than just uniform random models, as before).</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"176 ","pages":"Pages 111-162"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The degree-restricted random process is far from uniform\",\"authors\":\"Michael Molloy , Erlang Surya , Lutz Warnke\",\"doi\":\"10.1016/j.jctb.2025.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The degree-restricted random process is a natural algorithmic model for generating graphs with degree sequence <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>: starting with an empty <em>n</em>-vertex graph, it sequentially adds new random edges so that the degree of each vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> remains at most <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. Wormald conjectured in 1999 that, for <em>d</em>-regular degree sequences <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the final graph of this process is similar to a uniform random <em>d</em>-regular graph.</div><div>In this paper we show that, for degree sequences <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> that are not nearly regular, the final graph of the degree-restricted random process differs substantially from a uniform random graph with degree sequence <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. The combinatorial proof technique is our main conceptual contribution: we adapt the switching method to the degree-restricted process, demonstrating that this enumeration technique can also be used to analyze stochastic processes (rather than just uniform random models, as before).</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"176 \",\"pages\":\"Pages 111-162\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895625000577\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000577","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The degree-restricted random process is far from uniform
The degree-restricted random process is a natural algorithmic model for generating graphs with degree sequence : starting with an empty n-vertex graph, it sequentially adds new random edges so that the degree of each vertex remains at most . Wormald conjectured in 1999 that, for d-regular degree sequences , the final graph of this process is similar to a uniform random d-regular graph.
In this paper we show that, for degree sequences that are not nearly regular, the final graph of the degree-restricted random process differs substantially from a uniform random graph with degree sequence . The combinatorial proof technique is our main conceptual contribution: we adapt the switching method to the degree-restricted process, demonstrating that this enumeration technique can also be used to analyze stochastic processes (rather than just uniform random models, as before).
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.