受程度限制的随机过程远非一致

IF 1.2 1区 数学 Q1 MATHEMATICS
Michael Molloy , Erlang Surya , Lutz Warnke
{"title":"受程度限制的随机过程远非一致","authors":"Michael Molloy ,&nbsp;Erlang Surya ,&nbsp;Lutz Warnke","doi":"10.1016/j.jctb.2025.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>The degree-restricted random process is a natural algorithmic model for generating graphs with degree sequence <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>: starting with an empty <em>n</em>-vertex graph, it sequentially adds new random edges so that the degree of each vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> remains at most <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. Wormald conjectured in 1999 that, for <em>d</em>-regular degree sequences <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the final graph of this process is similar to a uniform random <em>d</em>-regular graph.</div><div>In this paper we show that, for degree sequences <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> that are not nearly regular, the final graph of the degree-restricted random process differs substantially from a uniform random graph with degree sequence <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. The combinatorial proof technique is our main conceptual contribution: we adapt the switching method to the degree-restricted process, demonstrating that this enumeration technique can also be used to analyze stochastic processes (rather than just uniform random models, as before).</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"176 ","pages":"Pages 111-162"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The degree-restricted random process is far from uniform\",\"authors\":\"Michael Molloy ,&nbsp;Erlang Surya ,&nbsp;Lutz Warnke\",\"doi\":\"10.1016/j.jctb.2025.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The degree-restricted random process is a natural algorithmic model for generating graphs with degree sequence <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>: starting with an empty <em>n</em>-vertex graph, it sequentially adds new random edges so that the degree of each vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> remains at most <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. Wormald conjectured in 1999 that, for <em>d</em>-regular degree sequences <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the final graph of this process is similar to a uniform random <em>d</em>-regular graph.</div><div>In this paper we show that, for degree sequences <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> that are not nearly regular, the final graph of the degree-restricted random process differs substantially from a uniform random graph with degree sequence <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. The combinatorial proof technique is our main conceptual contribution: we adapt the switching method to the degree-restricted process, demonstrating that this enumeration technique can also be used to analyze stochastic processes (rather than just uniform random models, as before).</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"176 \",\"pages\":\"Pages 111-162\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895625000577\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000577","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

度限制随机过程是生成度序列dn=(d1,…,dn)图的一种自然算法模型:从一个空的n顶点图开始,顺序地添加新的随机边,使每个顶点vi的度最多保持di。Wormald在1999年推测,对于d正则次序列dn,该过程的最终图类似于一致随机d正则图。在本文中,我们证明了对于不接近正则的次序列dn,限制次随机过程的最终图与具有次序列dn的一致随机图有很大的不同。组合证明技术是我们的主要概念贡献:我们将切换方法适应于程度限制过程,证明这种枚举技术也可以用于分析随机过程(而不仅仅是均匀随机模型,就像以前一样)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The degree-restricted random process is far from uniform
The degree-restricted random process is a natural algorithmic model for generating graphs with degree sequence dn=(d1,,dn): starting with an empty n-vertex graph, it sequentially adds new random edges so that the degree of each vertex vi remains at most di. Wormald conjectured in 1999 that, for d-regular degree sequences dn, the final graph of this process is similar to a uniform random d-regular graph.
In this paper we show that, for degree sequences dn that are not nearly regular, the final graph of the degree-restricted random process differs substantially from a uniform random graph with degree sequence dn. The combinatorial proof technique is our main conceptual contribution: we adapt the switching method to the degree-restricted process, demonstrating that this enumeration technique can also be used to analyze stochastic processes (rather than just uniform random models, as before).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信