The degree-restricted random process is far from uniform

IF 1.2 1区 数学 Q1 MATHEMATICS
Michael Molloy , Erlang Surya , Lutz Warnke
{"title":"The degree-restricted random process is far from uniform","authors":"Michael Molloy ,&nbsp;Erlang Surya ,&nbsp;Lutz Warnke","doi":"10.1016/j.jctb.2025.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>The degree-restricted random process is a natural algorithmic model for generating graphs with degree sequence <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>: starting with an empty <em>n</em>-vertex graph, it sequentially adds new random edges so that the degree of each vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> remains at most <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. Wormald conjectured in 1999 that, for <em>d</em>-regular degree sequences <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the final graph of this process is similar to a uniform random <em>d</em>-regular graph.</div><div>In this paper we show that, for degree sequences <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> that are not nearly regular, the final graph of the degree-restricted random process differs substantially from a uniform random graph with degree sequence <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. The combinatorial proof technique is our main conceptual contribution: we adapt the switching method to the degree-restricted process, demonstrating that this enumeration technique can also be used to analyze stochastic processes (rather than just uniform random models, as before).</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"176 ","pages":"Pages 111-162"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000577","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The degree-restricted random process is a natural algorithmic model for generating graphs with degree sequence dn=(d1,,dn): starting with an empty n-vertex graph, it sequentially adds new random edges so that the degree of each vertex vi remains at most di. Wormald conjectured in 1999 that, for d-regular degree sequences dn, the final graph of this process is similar to a uniform random d-regular graph.
In this paper we show that, for degree sequences dn that are not nearly regular, the final graph of the degree-restricted random process differs substantially from a uniform random graph with degree sequence dn. The combinatorial proof technique is our main conceptual contribution: we adapt the switching method to the degree-restricted process, demonstrating that this enumeration technique can also be used to analyze stochastic processes (rather than just uniform random models, as before).
受程度限制的随机过程远非一致
度限制随机过程是生成度序列dn=(d1,…,dn)图的一种自然算法模型:从一个空的n顶点图开始,顺序地添加新的随机边,使每个顶点vi的度最多保持di。Wormald在1999年推测,对于d正则次序列dn,该过程的最终图类似于一致随机d正则图。在本文中,我们证明了对于不接近正则的次序列dn,限制次随机过程的最终图与具有次序列dn的一致随机图有很大的不同。组合证明技术是我们的主要概念贡献:我们将切换方法适应于程度限制过程,证明这种枚举技术也可以用于分析随机过程(而不仅仅是均匀随机模型,就像以前一样)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信