伪随机图的Hamilton空间

IF 1.2 1区 数学 Q1 MATHEMATICS
Micha Christoph , Rajko Nenadov , Kalina Petrova
{"title":"伪随机图的Hamilton空间","authors":"Micha Christoph ,&nbsp;Rajko Nenadov ,&nbsp;Kalina Petrova","doi":"10.1016/j.jctb.2025.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>We show that if <em>n</em> is odd and <span><math><mi>p</mi><mo>≥</mo><mi>C</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>/</mo><mi>n</mi></math></span>, then with high probability Hamilton cycles in <span><math><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span> span its cycle space. More generally, we show this holds for a class of graphs satisfying certain natural pseudorandom properties. The proof is based on a novel idea of parity-switchers, which can be thought of as analogues of absorbers in the context of cycle spaces. As another application of our method, we show that Hamilton cycles in a near-Dirac graph <em>G</em>, that is, a graph <em>G</em> with odd <em>n</em> vertices and minimum degree <span><math><mi>n</mi><mo>/</mo><mn>2</mn><mo>+</mo><mi>C</mi></math></span> for sufficiently large constant <em>C</em>, span its cycle space.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"176 ","pages":"Pages 254-267"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Hamilton space of pseudorandom graphs\",\"authors\":\"Micha Christoph ,&nbsp;Rajko Nenadov ,&nbsp;Kalina Petrova\",\"doi\":\"10.1016/j.jctb.2025.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We show that if <em>n</em> is odd and <span><math><mi>p</mi><mo>≥</mo><mi>C</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>/</mo><mi>n</mi></math></span>, then with high probability Hamilton cycles in <span><math><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span> span its cycle space. More generally, we show this holds for a class of graphs satisfying certain natural pseudorandom properties. The proof is based on a novel idea of parity-switchers, which can be thought of as analogues of absorbers in the context of cycle spaces. As another application of our method, we show that Hamilton cycles in a near-Dirac graph <em>G</em>, that is, a graph <em>G</em> with odd <em>n</em> vertices and minimum degree <span><math><mi>n</mi><mo>/</mo><mn>2</mn><mo>+</mo><mi>C</mi></math></span> for sufficiently large constant <em>C</em>, span its cycle space.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"176 \",\"pages\":\"Pages 254-267\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895625000693\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000693","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了如果n是奇数且p≥Clog (n, n) /n,那么在G(n,p)中有高概率地张成它的Hamilton环空间。更一般地说,我们证明这适用于一类满足某些自然伪随机性质的图。这个证明是基于奇偶切换器的一个新思想,它可以被认为是循环空间中吸收器的类似物。作为我们方法的另一个应用,我们证明了一个近狄拉克图G中的Hamilton环,即对于足够大的常数C,具有奇数个顶点且最小度为n/2+C的图G,可以张成它的环空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Hamilton space of pseudorandom graphs
We show that if n is odd and pClogn/n, then with high probability Hamilton cycles in G(n,p) span its cycle space. More generally, we show this holds for a class of graphs satisfying certain natural pseudorandom properties. The proof is based on a novel idea of parity-switchers, which can be thought of as analogues of absorbers in the context of cycle spaces. As another application of our method, we show that Hamilton cycles in a near-Dirac graph G, that is, a graph G with odd n vertices and minimum degree n/2+C for sufficiently large constant C, span its cycle space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信