Thomassen's theorem on the two-linkage problem in acyclic digraphs: A shorter proof

IF 1.2 1区 数学 Q1 MATHEMATICS
Paul Seymour
{"title":"Thomassen's theorem on the two-linkage problem in acyclic digraphs: A shorter proof","authors":"Paul Seymour","doi":"10.1016/j.jctb.2025.08.006","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be an acyclic digraph, and let <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, where <span><math><mi>a</mi><mo>,</mo><mi>b</mi></math></span> are sources, <span><math><mi>c</mi><mo>,</mo><mi>d</mi></math></span> are sinks, and every other vertex has in-degree and out-degree at least two. In 1985, Thomassen showed that there do not exist disjoint directed paths from <em>a</em> to <em>c</em> and from <em>b</em> to <em>d</em>, if and only if <em>G</em> can be drawn in a closed disc with <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>d</mi></math></span> drawn in the boundary in order. We give a shorter proof.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"176 ","pages":"Pages 97-100"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000620","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be an acyclic digraph, and let a,b,c,dV(G), where a,b are sources, c,d are sinks, and every other vertex has in-degree and out-degree at least two. In 1985, Thomassen showed that there do not exist disjoint directed paths from a to c and from b to d, if and only if G can be drawn in a closed disc with a,b,c,d drawn in the boundary in order. We give a shorter proof.
无环有向图中双连杆问题的Thomassen定理:一个简短的证明
设G是一个无环有向图,设a,b,c,d∈V(G),其中a,b为源,c,d为汇,且其他每一个顶点至少有两个入度和出度。1985年,Thomassen证明了不存在从a到c和从b到d的不相交的有向路径,当且仅当G可以画在封闭圆盘上,a,b,c,d依次画在边界上。我们给出一个简短的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信