将χ-有界性与多项式χ-有界性重新统一

IF 1.2 1区 数学 Q1 MATHEMATICS
Maria Chudnovsky , Linda Cook , James Davies , Sang-il Oum
{"title":"将χ-有界性与多项式χ-有界性重新统一","authors":"Maria Chudnovsky ,&nbsp;Linda Cook ,&nbsp;James Davies ,&nbsp;Sang-il Oum","doi":"10.1016/j.jctb.2025.08.002","DOIUrl":null,"url":null,"abstract":"<div><div>A class <span><math><mi>F</mi></math></span> of graphs is <em>χ</em>-bounded if there is a function <em>f</em> such that <span><math><mi>χ</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>≤</mo><mi>f</mi><mo>(</mo><mi>ω</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>)</mo></math></span> for all induced subgraphs <em>H</em> of a graph in <span><math><mi>F</mi></math></span>. If <em>f</em> can be chosen to be a polynomial, we say that <span><math><mi>F</mi></math></span> is polynomially <em>χ</em>-bounded. Esperet proposed a conjecture that every <em>χ</em>-bounded class of graphs is polynomially <em>χ</em>-bounded. This conjecture has been disproved; it has been shown that there are classes of graphs that are <em>χ</em>-bounded but not polynomially <em>χ</em>-bounded. Nevertheless, inspired by Esperet's conjecture, we introduce Pollyanna classes of graphs. A class <span><math><mi>C</mi></math></span> of graphs is Pollyanna if <span><math><mi>C</mi><mo>∩</mo><mi>F</mi></math></span> is polynomially <em>χ</em>-bounded for every <em>χ</em>-bounded class <span><math><mi>F</mi></math></span> of graphs. We prove that several classes of graphs are Pollyanna and also present some proper classes of graphs that are not Pollyanna.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"176 ","pages":"Pages 30-73"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reuniting χ-boundedness with polynomial χ-boundedness\",\"authors\":\"Maria Chudnovsky ,&nbsp;Linda Cook ,&nbsp;James Davies ,&nbsp;Sang-il Oum\",\"doi\":\"10.1016/j.jctb.2025.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A class <span><math><mi>F</mi></math></span> of graphs is <em>χ</em>-bounded if there is a function <em>f</em> such that <span><math><mi>χ</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>≤</mo><mi>f</mi><mo>(</mo><mi>ω</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>)</mo></math></span> for all induced subgraphs <em>H</em> of a graph in <span><math><mi>F</mi></math></span>. If <em>f</em> can be chosen to be a polynomial, we say that <span><math><mi>F</mi></math></span> is polynomially <em>χ</em>-bounded. Esperet proposed a conjecture that every <em>χ</em>-bounded class of graphs is polynomially <em>χ</em>-bounded. This conjecture has been disproved; it has been shown that there are classes of graphs that are <em>χ</em>-bounded but not polynomially <em>χ</em>-bounded. Nevertheless, inspired by Esperet's conjecture, we introduce Pollyanna classes of graphs. A class <span><math><mi>C</mi></math></span> of graphs is Pollyanna if <span><math><mi>C</mi><mo>∩</mo><mi>F</mi></math></span> is polynomially <em>χ</em>-bounded for every <em>χ</em>-bounded class <span><math><mi>F</mi></math></span> of graphs. We prove that several classes of graphs are Pollyanna and also present some proper classes of graphs that are not Pollyanna.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"176 \",\"pages\":\"Pages 30-73\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895625000589\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000589","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果存在一个函数F,使得F中图的所有诱导子图H的χ(H)≤F (ω(H)),则一类图F是χ-有界的。如果F可以选择为多项式,则我们说F是多项式χ-有界的。Esperet提出了一个猜想,即每一类有χ有界的图都是多项式有χ有界的。这个猜想已经被推翻了;已经证明有一类图是χ有界的,但不是多项式χ有界的。然而,受Esperet猜想的启发,我们引入了波利安娜图类。如果C∩F对于每一个有χ有界的图类F都是多项式χ有界的,那么C类图就是波利安娜。我们证明了几类图是盲目乐观的,并给出了一些非盲目乐观图的适当类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reuniting χ-boundedness with polynomial χ-boundedness
A class F of graphs is χ-bounded if there is a function f such that χ(H)f(ω(H)) for all induced subgraphs H of a graph in F. If f can be chosen to be a polynomial, we say that F is polynomially χ-bounded. Esperet proposed a conjecture that every χ-bounded class of graphs is polynomially χ-bounded. This conjecture has been disproved; it has been shown that there are classes of graphs that are χ-bounded but not polynomially χ-bounded. Nevertheless, inspired by Esperet's conjecture, we introduce Pollyanna classes of graphs. A class C of graphs is Pollyanna if CF is polynomially χ-bounded for every χ-bounded class F of graphs. We prove that several classes of graphs are Pollyanna and also present some proper classes of graphs that are not Pollyanna.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信