Closure property of contraction-depth of matroids

IF 1.2 1区 数学 Q1 MATHEMATICS
Marcin Briański, Daniel Král', Ander Lamaison
{"title":"Closure property of contraction-depth of matroids","authors":"Marcin Briański, Daniel Král', Ander Lamaison","doi":"10.1016/j.jctb.2025.07.006","DOIUrl":null,"url":null,"abstract":"Contraction<ce:sup loc=\"post\">⁎</ce:sup>-depth is a matroid depth parameter analogous to tree-depth of graphs. We establish the matroid analogue of the classical graph theory result asserting that the tree-depth of a graph <ce:italic>G</ce:italic> is the minimum height of a rooted forest whose closure contains <ce:italic>G</ce:italic> by proving the following for every matroid <ce:italic>M</ce:italic> (except the trivial case when <ce:italic>M</ce:italic> consists of loops and coloops only): the contraction<ce:sup loc=\"post\">⁎</ce:sup>-depth of <ce:italic>M</ce:italic> plus one is equal to the minimum contraction-depth of a matroid containing <ce:italic>M</ce:italic> as a restriction.","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"53 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.jctb.2025.07.006","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Contraction-depth is a matroid depth parameter analogous to tree-depth of graphs. We establish the matroid analogue of the classical graph theory result asserting that the tree-depth of a graph G is the minimum height of a rooted forest whose closure contains G by proving the following for every matroid M (except the trivial case when M consists of loops and coloops only): the contraction-depth of M plus one is equal to the minimum contraction-depth of a matroid containing M as a restriction.
拟阵收缩深度的闭包性
收缩-depth是一个矩阵深度参数,类似于图的树深度。我们通过对每个矩阵M(除了M只由环和圈组成的平凡情况外)证明以下内容,建立了经典图论结果的拟阵模拟,该结果断言图G的树深是闭包包含G的根森林的最小高度:M + 1的收缩深度等于包含M作为约束的矩阵的最小收缩深度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信