On graphs without cycles of length 0 modulo 4

IF 1.2 1区 数学 Q1 MATHEMATICS
Ervin Győri , Binlong Li , Nika Salia , Casey Tompkins , Kitti Varga , Manran Zhu
{"title":"On graphs without cycles of length 0 modulo 4","authors":"Ervin Győri ,&nbsp;Binlong Li ,&nbsp;Nika Salia ,&nbsp;Casey Tompkins ,&nbsp;Kitti Varga ,&nbsp;Manran Zhu","doi":"10.1016/j.jctb.2025.07.008","DOIUrl":null,"url":null,"abstract":"<div><div>Bollobás proved that for every <em>k</em> and <em>ℓ</em> such that <span><math><mi>k</mi><mi>Z</mi><mo>+</mo><mi>ℓ</mi></math></span> contains an even number, an <em>n</em>-vertex graph containing no cycle of length <span><math><mi>ℓ</mi><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mi>k</mi></math></span> can contain at most a linear number of edges. The precise (or asymptotic) value of the maximum number of edges in such a graph is known for very few pairs <em>ℓ</em> and <em>k</em>. In this work we precisely determine the maximum number of edges in a graph containing no cycle of length <span><math><mn>0</mn><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn></math></span>.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"176 ","pages":"Pages 7-29"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000565","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Bollobás proved that for every k and such that kZ+ contains an even number, an n-vertex graph containing no cycle of length modk can contain at most a linear number of edges. The precise (or asymptotic) value of the maximum number of edges in such a graph is known for very few pairs and k. In this work we precisely determine the maximum number of edges in a graph containing no cycle of length 0mod4.
在没有周期长度为0模4的图上
Bollobás证明了对于每一个k和r,使得k z + r包含一个偶数,一个n顶点的图,不包含长度为r modk的循环,最多只能包含一个线性数的边。这种图中最大边数的精确(或渐近)值对于很少的对(r和k)是已知的。在这项工作中,我们精确地确定了不包含长度为0mod4的循环的图中的最大边数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信