Ervin Győri , Binlong Li , Nika Salia , Casey Tompkins , Kitti Varga , Manran Zhu
{"title":"On graphs without cycles of length 0 modulo 4","authors":"Ervin Győri , Binlong Li , Nika Salia , Casey Tompkins , Kitti Varga , Manran Zhu","doi":"10.1016/j.jctb.2025.07.008","DOIUrl":null,"url":null,"abstract":"<div><div>Bollobás proved that for every <em>k</em> and <em>ℓ</em> such that <span><math><mi>k</mi><mi>Z</mi><mo>+</mo><mi>ℓ</mi></math></span> contains an even number, an <em>n</em>-vertex graph containing no cycle of length <span><math><mi>ℓ</mi><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mi>k</mi></math></span> can contain at most a linear number of edges. The precise (or asymptotic) value of the maximum number of edges in such a graph is known for very few pairs <em>ℓ</em> and <em>k</em>. In this work we precisely determine the maximum number of edges in a graph containing no cycle of length <span><math><mn>0</mn><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn></math></span>.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"176 ","pages":"Pages 7-29"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000565","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Bollobás proved that for every k and ℓ such that contains an even number, an n-vertex graph containing no cycle of length can contain at most a linear number of edges. The precise (or asymptotic) value of the maximum number of edges in such a graph is known for very few pairs ℓ and k. In this work we precisely determine the maximum number of edges in a graph containing no cycle of length .
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.