Journal of Combinatorial Theory Series B最新文献

筛选
英文 中文
The matroid of a graphing 图形的矩阵
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-08-30 DOI: 10.1016/j.jctb.2024.08.001
László Lovász
{"title":"The matroid of a graphing","authors":"László Lovász","doi":"10.1016/j.jctb.2024.08.001","DOIUrl":"10.1016/j.jctb.2024.08.001","url":null,"abstract":"<div><p>Graphings serve as limit objects for bounded-degree graphs. We define the “cycle matroid” of a graphing as a submodular setfunction, with values in <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, which generalizes (up to normalization) the cycle matroid of finite graphs. We prove that for a Benjamini–Schramm convergent sequence of graphs, the total rank, normalized by the number of nodes, converges to the total rank of the limit graphing.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000674/pdfft?md5=528a3e8bac91d6edbcc14e05198c5db4&pid=1-s2.0-S0095895624000674-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal spread for spanning subgraphs of Dirac hypergraphs 狄拉克超图的跨度子图的最佳展布
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-08-26 DOI: 10.1016/j.jctb.2024.08.006
Tom Kelly , Alp Müyesser , Alexey Pokrovskiy
{"title":"Optimal spread for spanning subgraphs of Dirac hypergraphs","authors":"Tom Kelly ,&nbsp;Alp Müyesser ,&nbsp;Alexey Pokrovskiy","doi":"10.1016/j.jctb.2024.08.006","DOIUrl":"10.1016/j.jctb.2024.08.006","url":null,"abstract":"<div><p>Let <em>G</em> and <em>H</em> be hypergraphs on <em>n</em> vertices, and suppose <em>H</em> has large enough minimum degree to necessarily contain a copy of <em>G</em> as a subgraph. We give a general method to randomly embed <em>G</em> into <em>H</em> with good “spread”. More precisely, for a wide class of <em>G</em>, we find a randomised embedding <span><math><mi>f</mi><mo>:</mo><mi>G</mi><mo>↪</mo><mi>H</mi></math></span> with the following property: for every <em>s</em>, for any partial embedding <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of <em>s</em> vertices of <em>G</em> into <em>H</em>, the probability that <em>f</em> extends <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> is at most <span><math><mi>O</mi><msup><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mi>n</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup></math></span>. This is a common generalisation of several streams of research surrounding the classical Dirac-type problem.</p><p>For example, setting <span><math><mi>s</mi><mo>=</mo><mi>n</mi></math></span>, we obtain an asymptotically tight lower bound on the number of embeddings of <em>G</em> into <em>H</em>. This recovers and extends recent results of Glock, Gould, Joos, Kühn, and Osthus and of Montgomery and Pavez-Signé regarding enumerating Hamilton cycles in Dirac hypergraphs. Moreover, using the recent developments surrounding the Kahn–Kalai conjecture, this result implies that many Dirac-type results hold robustly, meaning <em>G</em> still embeds into <em>H</em> after a random sparsification of its edge set. This allows us to recover a recent result of Kang, Kelly, Kühn, Osthus, and Pfenninger and of Pham, Sah, Sawhney, and Simkin for perfect matchings, and obtain novel results for Hamilton cycles and factors in Dirac hypergraphs.</p><p>Notably, our randomised embedding algorithm is self-contained and does not require Szemerédi's regularity lemma or iterative absorption.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000728/pdfft?md5=533c17ed0f6d70854b2dd9d401343fd1&pid=1-s2.0-S0095895624000728-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142076465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kruskal–Katona-type problems via the entropy method 通过熵方法解决克鲁斯卡尔-卡托纳类型问题
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-08-22 DOI: 10.1016/j.jctb.2024.08.003
Ting-Wei Chao , Hung-Hsun Hans Yu
{"title":"Kruskal–Katona-type problems via the entropy method","authors":"Ting-Wei Chao ,&nbsp;Hung-Hsun Hans Yu","doi":"10.1016/j.jctb.2024.08.003","DOIUrl":"10.1016/j.jctb.2024.08.003","url":null,"abstract":"<div><p>In this paper, we investigate several extremal combinatorics problems that ask for the maximum number of copies of a fixed subgraph given the number of edges. We call problems of this type Kruskal–Katona-type problems. Most of the problems that will be discussed in this paper are related to the joints problem. There are two main results in this paper. First, we prove that, in a 3-edge-colored graph with <em>R</em> red, <em>G</em> green, <em>B</em> blue edges, the number of rainbow triangles is at most <span><math><msqrt><mrow><mn>2</mn><mi>R</mi><mi>G</mi><mi>B</mi></mrow></msqrt></math></span>, which is sharp. Second, we give a generalization of the Kruskal–Katona theorem that implies many other previous generalizations. Both arguments use the entropy method, and the main innovation lies in a more clever argument that improves bounds given by Shearer's inequality.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extremal spectral radius of nonregular graphs with prescribed maximum degree 具有规定最大度的非规则图形的极谱半径
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-08-12 DOI: 10.1016/j.jctb.2024.07.007
Lele Liu
{"title":"Extremal spectral radius of nonregular graphs with prescribed maximum degree","authors":"Lele Liu","doi":"10.1016/j.jctb.2024.07.007","DOIUrl":"10.1016/j.jctb.2024.07.007","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Let &lt;em&gt;G&lt;/em&gt; be a graph attaining the maximum spectral radius among all connected nonregular graphs of order &lt;em&gt;n&lt;/em&gt; with maximum degree Δ. Let &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; be the spectral radius of &lt;em&gt;G&lt;/em&gt;. A nice conjecture due to Liu et al. (2007) &lt;span&gt;&lt;span&gt;[19]&lt;/span&gt;&lt;/span&gt; asserts that&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;munder&gt;&lt;mi&gt;lim&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; for each fixed Δ. Concerning an important structural property of the extremal graphs &lt;em&gt;G&lt;/em&gt;, Liu and Li (2008) &lt;span&gt;&lt;span&gt;[17]&lt;/span&gt;&lt;/span&gt; put forward another conjecture which states that &lt;em&gt;G&lt;/em&gt; has exactly one vertex of degree strictly less than Δ. In this paper, we make progress on the two conjectures. To be precise, we disprove the first conjecture for all &lt;span&gt;&lt;math&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; by showing that&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;munder&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;lim&lt;/mi&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mrow&gt;&lt;mi&gt;sup&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; For small Δ, we determine the precise asymptotic behavior of &lt;span&gt;&lt;math&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. In particular, we show that &lt;span&gt;&lt;math&gt;&lt;munder&gt;&lt;mi&gt;lim&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; if &lt;span&gt;&lt;math&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;; and &lt;span&gt;&lt;math&gt;&lt;munder&gt;&lt;mi&gt;lim&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141964273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The automorphism group of a complementary prism 互补棱柱的自形群
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-08-02 DOI: 10.1016/j.jctb.2024.07.004
Marko Orel
{"title":"The automorphism group of a complementary prism","authors":"Marko Orel","doi":"10.1016/j.jctb.2024.07.004","DOIUrl":"10.1016/j.jctb.2024.07.004","url":null,"abstract":"<div><p>Given a finite simple graph Γ on <em>n</em> vertices its complementary prism is the graph <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> that is obtained from Γ and its complement <span><math><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> by adding a perfect matching where each its edge connects two copies of the same vertex in Γ and <span><math><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span>. It generalizes the Petersen graph, which is obtained if Γ is the pentagon. The automorphism group of <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> is described for an arbitrary graph Γ. In particular, it is shown that the ratio between the cardinalities of the automorphism groups of <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> and Γ can attain only the values 1, 2, 4, and 12. It is shown that <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> is vertex-transitive if and only if Γ is vertex-transitive and self-complementary. Moreover, the complementary prism is not a Cayley graph whenever <span><math><mi>n</mi><mo>&gt;</mo><mn>1</mn></math></span>.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000637/pdfft?md5=a7e845989152de594006704697688b0c&pid=1-s2.0-S0095895624000637-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
H-factors in graphs with small independence number 小独立数图形中的 H 因子
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-07-31 DOI: 10.1016/j.jctb.2024.07.005
Ming Chen , Jie Han , Guanghui Wang , Donglei Yang
{"title":"H-factors in graphs with small independence number","authors":"Ming Chen ,&nbsp;Jie Han ,&nbsp;Guanghui Wang ,&nbsp;Donglei Yang","doi":"10.1016/j.jctb.2024.07.005","DOIUrl":"10.1016/j.jctb.2024.07.005","url":null,"abstract":"<div><p>Let <em>H</em> be an <em>h</em>-vertex graph. The vertex arboricity <span><math><mi>a</mi><mi>r</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> of <em>H</em> is the least integer <em>r</em> such that <span><math><mi>V</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> can be partitioned into <em>r</em> parts and each part induces a forest in <em>H</em>. We show that for sufficiently large <span><math><mi>n</mi><mo>∈</mo><mi>h</mi><mi>N</mi></math></span>, every <em>n</em>-vertex graph <em>G</em> with <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>max</mi><mo>⁡</mo><mrow><mo>{</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>f</mi><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo></mrow><mi>n</mi><mo>,</mo><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo></mrow><mi>n</mi><mo>}</mo></mrow></math></span> and <span><math><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> contains an <em>H</em>-factor, where <span><math><mi>f</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>=</mo><mn>2</mn><mi>a</mi><mi>r</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> or <span><math><mn>2</mn><mi>a</mi><mi>r</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>. The result can be viewed an analogue of the Alon–Yuster theorem <span><span>[1]</span></span> in Ramsey–Turán theory, which generalizes the results of Balogh–Molla–Sharifzadeh <span><span>[2]</span></span> and Knierim–Su <span><span>[21]</span></span> on clique factors. In particular the degree conditions are asymptotically sharp for infinitely many graphs <em>H</em> which are not cliques.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A weak box-perfect graph theorem 弱箱完全图定理
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-07-30 DOI: 10.1016/j.jctb.2024.07.006
Patrick Chervet , Roland Grappe
{"title":"A weak box-perfect graph theorem","authors":"Patrick Chervet ,&nbsp;Roland Grappe","doi":"10.1016/j.jctb.2024.07.006","DOIUrl":"10.1016/j.jctb.2024.07.006","url":null,"abstract":"<div><p>A graph <em>G</em> is called <em>perfect</em> if <span><math><mi>ω</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>=</mo><mi>χ</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> for every induced subgraph <em>H</em> of <em>G</em>, where <span><math><mi>ω</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> is the clique number of <em>H</em> and <span><math><mi>χ</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> its chromatic number. The Weak Perfect Graph Theorem of Lovász states that a graph <em>G</em> is perfect if and only if its complement <span><math><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></math></span> is perfect. This does not hold for box-perfect graphs, which are the perfect graphs whose stable set polytope is box-totally dual integral.</p><p>We prove that both <em>G</em> and <span><math><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></math></span> are box-perfect if and only if <span><math><msup><mrow><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></mrow><mrow><mo>+</mo></mrow></msup></math></span> is box-perfect, where <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> is obtained by adding a universal vertex to <em>G</em>. Consequently, <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> is box-perfect if and only if <span><math><msup><mrow><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></mrow><mrow><mo>+</mo></mrow></msup></math></span> is box-perfect. As a corollary, we characterize when the complete join of two graphs is box-perfect.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000650/pdfft?md5=353ef0de641409c4b03042060f5fe02a&pid=1-s2.0-S0095895624000650-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boundary rigidity of CAT(0) cube complexes CAT(0) 立方体复合物的边界刚度
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-07-22 DOI: 10.1016/j.jctb.2024.07.003
Jérémie Chalopin, Victor Chepoi
{"title":"Boundary rigidity of CAT(0) cube complexes","authors":"Jérémie Chalopin,&nbsp;Victor Chepoi","doi":"10.1016/j.jctb.2024.07.003","DOIUrl":"10.1016/j.jctb.2024.07.003","url":null,"abstract":"<div><p>In this note, we prove that finite CAT(0) cube complexes can be reconstructed from their boundary distances (computed in their 1-skeleta). This result was conjectured by Haslegrave, Scott, Tamitegama, and Tan (2023). The reconstruction of a finite cell complex from the boundary distances is the discrete version of the boundary rigidity problem, which is a classical problem from Riemannian geometry. In the proof, we use the bijection between CAT(0) cube complexes and median graphs, and corner peelings of median graphs.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141960447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractional coloring with local demands and applications to degree-sequence bounds on the independence number 具有局部要求的分数着色及其在独立数度序界限中的应用
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-07-22 DOI: 10.1016/j.jctb.2024.07.002
Tom Kelly , Luke Postle
{"title":"Fractional coloring with local demands and applications to degree-sequence bounds on the independence number","authors":"Tom Kelly ,&nbsp;Luke Postle","doi":"10.1016/j.jctb.2024.07.002","DOIUrl":"10.1016/j.jctb.2024.07.002","url":null,"abstract":"<div><p>In a fractional coloring, vertices of a graph are assigned measurable subsets of the real line and adjacent vertices receive disjoint subsets; the fractional chromatic number of a graph is at most <em>k</em> if it has a fractional coloring in which each vertex receives a subset of <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> of measure at least <span><math><mn>1</mn><mo>/</mo><mi>k</mi></math></span>. We introduce and develop the theory of “fractional colorings with local demands” wherein each vertex “demands” a certain amount of color that is determined by local parameters such as its degree or the clique number of its neighborhood. This framework provides the natural setting in which to generalize degree-sequence type bounds on the independence number. Indeed, by Linear Programming Duality, all of the problems we study have an equivalent formulation as a problem concerning weighted independence numbers, and they often imply new bounds on the independence number.</p><p>Our results and conjectures are inspired by many of the most classical results and important open problems concerning the independence number and the chromatic number, often simultaneously. We conjecture a local strengthening of both Shearer's bound on the independence number of triangle-free graphs and the fractional relaxation of Molloy's recent bound on their chromatic number, as well as a longstanding problem of Ajtai et al. on the independence number of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>-free graphs and the fractional relaxations of Reed's <span><math><mi>ω</mi><mo>,</mo><mi>Δ</mi><mo>,</mo><mi>χ</mi></math></span> Conjecture and the Total Coloring Conjecture. We prove an approximate version of the first two, and we prove “local demands” versions of Vizing's Theorem and of some <em>χ</em>-boundedness results.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An oriented discrepancy version of Dirac's theorem 狄拉克定理的定向差异版本
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-07-22 DOI: 10.1016/j.jctb.2024.06.008
Andrea Freschi, Allan Lo
{"title":"An oriented discrepancy version of Dirac's theorem","authors":"Andrea Freschi,&nbsp;Allan Lo","doi":"10.1016/j.jctb.2024.06.008","DOIUrl":"10.1016/j.jctb.2024.06.008","url":null,"abstract":"<div><p>The study of graph discrepancy problems, initiated by Erdős in the 1960s, has received renewed attention in recent years. In general, given a 2-edge-coloured graph <em>G</em>, one is interested in embedding a copy of a graph <em>H</em> in <em>G</em> with large discrepancy (i.e. the copy of <em>H</em> contains significantly more than half of its edges in one colour).</p><p>Motivated by this line of research, Gishboliner, Krivelevich and Michaeli considered an oriented version of graph discrepancy for Hamilton cycles. In particular, they conjectured the following generalisation of Dirac's theorem: if <em>G</em> is an oriented graph on <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> vertices with <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>n</mi><mo>/</mo><mn>2</mn></math></span>, then <em>G</em> contains a Hamilton cycle with at least <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> edges pointing forwards. In this paper, we present a full resolution to this conjecture.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000571/pdfft?md5=c4578c27cd9e214edf177c194b1972bb&pid=1-s2.0-S0095895624000571-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信