谱界的矩阵实现

IF 1.2 1区 数学 Q1 MATHEMATICS
Yen-Jen Cheng , Chih-wen Weng
{"title":"谱界的矩阵实现","authors":"Yen-Jen Cheng ,&nbsp;Chih-wen Weng","doi":"10.1016/j.jctb.2025.04.006","DOIUrl":null,"url":null,"abstract":"<div><div>We give a unified and systematic way to find bounds for the largest real eigenvalue of a nonnegative matrix by considering its modified quotient matrix. We leverage this insight to identify the unique matrix whose largest real eigenvalue is maximum among all <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-matrices with a specified number of ones. This result resolves a problem that was posed independently by R. Brualdi and A. Hoffman, as well as F. Friedland, back in 1985.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"174 ","pages":"Pages 1-27"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A matrix realization of spectral bounds\",\"authors\":\"Yen-Jen Cheng ,&nbsp;Chih-wen Weng\",\"doi\":\"10.1016/j.jctb.2025.04.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We give a unified and systematic way to find bounds for the largest real eigenvalue of a nonnegative matrix by considering its modified quotient matrix. We leverage this insight to identify the unique matrix whose largest real eigenvalue is maximum among all <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-matrices with a specified number of ones. This result resolves a problem that was posed independently by R. Brualdi and A. Hoffman, as well as F. Friedland, back in 1985.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"174 \",\"pages\":\"Pages 1-27\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895625000279\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000279","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用非负矩阵的修正商矩阵,给出了求非负矩阵最大实特征值界的统一、系统的方法。我们利用这一见解来识别唯一矩阵,其最大实特征值在所有(0,1)-具有指定数量的矩阵中是最大的。这一结果解决了R. Brualdi和a . Hoffman以及F. Friedland在1985年独立提出的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A matrix realization of spectral bounds
We give a unified and systematic way to find bounds for the largest real eigenvalue of a nonnegative matrix by considering its modified quotient matrix. We leverage this insight to identify the unique matrix whose largest real eigenvalue is maximum among all (0,1)-matrices with a specified number of ones. This result resolves a problem that was posed independently by R. Brualdi and A. Hoffman, as well as F. Friedland, back in 1985.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信