通过局部调整查找不规则子图

IF 1.2 1区 数学 Q1 MATHEMATICS
Jie Ma , Shengjie Xie
{"title":"通过局部调整查找不规则子图","authors":"Jie Ma ,&nbsp;Shengjie Xie","doi":"10.1016/j.jctb.2025.04.008","DOIUrl":null,"url":null,"abstract":"<div><div>For a graph <em>H</em>, let <span><math><mi>m</mi><mo>(</mo><mi>H</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> denote the number of vertices of degree <em>k</em> in <em>H</em>. A conjecture of Alon and Wei states that for any <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span>, every <em>n</em>-vertex <em>d</em>-regular graph contains a spanning subgraph <em>H</em> satisfying <span><math><mo>|</mo><mi>m</mi><mo>(</mo><mi>H</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>−</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>|</mo><mo>≤</mo><mn>2</mn></math></span> for every <span><math><mn>0</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>d</mi></math></span>. This holds easily when <span><math><mi>d</mi><mo>≤</mo><mn>2</mn></math></span>. An asymptotic version of this conjecture was initially established by Frieze, Gould, Karoński and Pfender, subsequently improved by Alon and Wei, and most recently enhanced by Fox, Luo and Pham, approaching its complete range. All of these approaches relied on probabilistic methods.</div><div>In this paper, we provide a novel framework to study this conjecture, based on localized deterministic techniques which we call local adjustments. We prove two main results. Firstly, we show that every <em>n</em>-vertex <em>d</em>-regular graph contains a spanning subgraph <em>H</em> satisfying <span><math><mo>|</mo><mi>m</mi><mo>(</mo><mi>H</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>−</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>|</mo><mo>≤</mo><mn>2</mn><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for all <span><math><mn>0</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>d</mi></math></span>, which provides the first bound independent of the value of <em>n</em>. Secondly, we confirm the case <span><math><mi>d</mi><mo>=</mo><mn>3</mn></math></span> of the Alon-Wei Conjecture in a strong form. Both results can be generalized to multigraphs and yield efficient algorithms for finding the desired subgraphs <em>H</em>. Furthermore, we explore a generalization of the Alon-Wei Conjecture for multigraphs and its connection to the Faudree-Lehel Conjecture concerning irregularity strength.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"174 ","pages":"Pages 71-98"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding irregular subgraphs via local adjustments\",\"authors\":\"Jie Ma ,&nbsp;Shengjie Xie\",\"doi\":\"10.1016/j.jctb.2025.04.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a graph <em>H</em>, let <span><math><mi>m</mi><mo>(</mo><mi>H</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> denote the number of vertices of degree <em>k</em> in <em>H</em>. A conjecture of Alon and Wei states that for any <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span>, every <em>n</em>-vertex <em>d</em>-regular graph contains a spanning subgraph <em>H</em> satisfying <span><math><mo>|</mo><mi>m</mi><mo>(</mo><mi>H</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>−</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>|</mo><mo>≤</mo><mn>2</mn></math></span> for every <span><math><mn>0</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>d</mi></math></span>. This holds easily when <span><math><mi>d</mi><mo>≤</mo><mn>2</mn></math></span>. An asymptotic version of this conjecture was initially established by Frieze, Gould, Karoński and Pfender, subsequently improved by Alon and Wei, and most recently enhanced by Fox, Luo and Pham, approaching its complete range. All of these approaches relied on probabilistic methods.</div><div>In this paper, we provide a novel framework to study this conjecture, based on localized deterministic techniques which we call local adjustments. We prove two main results. Firstly, we show that every <em>n</em>-vertex <em>d</em>-regular graph contains a spanning subgraph <em>H</em> satisfying <span><math><mo>|</mo><mi>m</mi><mo>(</mo><mi>H</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>−</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>|</mo><mo>≤</mo><mn>2</mn><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for all <span><math><mn>0</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>d</mi></math></span>, which provides the first bound independent of the value of <em>n</em>. Secondly, we confirm the case <span><math><mi>d</mi><mo>=</mo><mn>3</mn></math></span> of the Alon-Wei Conjecture in a strong form. Both results can be generalized to multigraphs and yield efficient algorithms for finding the desired subgraphs <em>H</em>. Furthermore, we explore a generalization of the Alon-Wei Conjecture for multigraphs and its connection to the Faudree-Lehel Conjecture concerning irregularity strength.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"174 \",\"pages\":\"Pages 71-98\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895625000309\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000309","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于图H,设m(H,k)表示H中k度顶点的个数。Alon和Wei的一个猜想指出,对于任意d≥3,每个n顶点的d正则图都包含一个生成子图H,满足|m(H,k)−和+1|≤2,对于每0≤k≤d。当d≤2时,这很容易成立。这个猜想的渐近版本最初由Frieze, Gould, Karoński和Pfender建立,随后由Alon和Wei改进,最近由Fox, Luo和Pham加强,接近其完整范围。所有这些方法都依赖于概率方法。在本文中,我们提供了一个新的框架来研究这一猜想,基于局部确定性技术,我们称之为局部调整。我们证明了两个主要结果。首先,我们证明了每个n顶点d正则图都包含一个生成子图H满足|m(H,k)−和+1|≤2d2,这提供了与n值无关的第一界。其次,我们以强形式证实了Alon-Wei猜想d=3的情况。这两个结果都可以推广到多图中,并给出了寻找所需子图h的有效算法。此外,我们探讨了多图的Alon-Wei猜想的推广及其与关于不规则强度的Faudree-Lehel猜想的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding irregular subgraphs via local adjustments
For a graph H, let m(H,k) denote the number of vertices of degree k in H. A conjecture of Alon and Wei states that for any d3, every n-vertex d-regular graph contains a spanning subgraph H satisfying |m(H,k)nd+1|2 for every 0kd. This holds easily when d2. An asymptotic version of this conjecture was initially established by Frieze, Gould, Karoński and Pfender, subsequently improved by Alon and Wei, and most recently enhanced by Fox, Luo and Pham, approaching its complete range. All of these approaches relied on probabilistic methods.
In this paper, we provide a novel framework to study this conjecture, based on localized deterministic techniques which we call local adjustments. We prove two main results. Firstly, we show that every n-vertex d-regular graph contains a spanning subgraph H satisfying |m(H,k)nd+1|2d2 for all 0kd, which provides the first bound independent of the value of n. Secondly, we confirm the case d=3 of the Alon-Wei Conjecture in a strong form. Both results can be generalized to multigraphs and yield efficient algorithms for finding the desired subgraphs H. Furthermore, we explore a generalization of the Alon-Wei Conjecture for multigraphs and its connection to the Faudree-Lehel Conjecture concerning irregularity strength.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信