Optimal bounds for zero-sum cycles. I. Odd order

IF 1.2 1区 数学 Q1 MATHEMATICS
Rutger Campbell , J. Pascal Gollin , Kevin Hendrey , Raphael Steiner
{"title":"Optimal bounds for zero-sum cycles. I. Odd order","authors":"Rutger Campbell ,&nbsp;J. Pascal Gollin ,&nbsp;Kevin Hendrey ,&nbsp;Raphael Steiner","doi":"10.1016/j.jctb.2025.04.003","DOIUrl":null,"url":null,"abstract":"<div><div>For a finite (not necessarily abelian) group <span><math><mo>(</mo><mi>Γ</mi><mo>,</mo><mo>⋅</mo><mo>)</mo></math></span>, let <span><math><mi>n</mi><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span> denote the smallest positive integer <em>n</em> such that for each labelling of the arcs of the complete digraph of order <em>n</em> using elements from Γ, there exists a directed cycle such that the arc-labels along the cycle multiply to the identity. Alon and Krivelevich <span><span>[2]</span></span> initiated the study of the parameter <span><math><mi>n</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span> on cyclic groups and proved <span><math><mi>n</mi><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>O</mi><mo>(</mo><mi>q</mi><mi>log</mi><mo>⁡</mo><mi>q</mi><mo>)</mo></math></span>. This was later improved to a linear bound of <span><math><mi>n</mi><mo>(</mo><mi>Γ</mi><mo>)</mo><mo>≤</mo><mn>8</mn><mo>|</mo><mi>Γ</mi><mo>|</mo></math></span> for every finite abelian group by Mészáros and the last author <span><span>[8]</span></span>, and then further to <span><math><mi>n</mi><mo>(</mo><mi>Γ</mi><mo>)</mo><mo>≤</mo><mn>2</mn><mo>|</mo><mi>Γ</mi><mo>|</mo><mo>−</mo><mn>1</mn></math></span> for every non-trivial finite group independently by Berendsohn, Boyadzhiyska and Kozma <span><span>[3]</span></span> as well as by Akrami, Alon, Chaudhury, Garg, Mehlhorn and Mehta <span><span>[1]</span></span>.</div><div>In this series of two papers we conclude this line of research by proving that <span><math><mi>n</mi><mo>(</mo><mi>Γ</mi><mo>)</mo><mo>≤</mo><mo>|</mo><mi>Γ</mi><mo>|</mo><mo>+</mo><mn>1</mn></math></span> for every finite group <span><math><mo>(</mo><mi>Γ</mi><mo>,</mo><mo>⋅</mo><mo>)</mo></math></span>, which is the best possible such bound in terms of the group order and precisely determines the value of <span><math><mi>n</mi><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span> for all cyclic groups as <span><math><mi>n</mi><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>q</mi><mo>+</mo><mn>1</mn></math></span>.</div><div>In the present paper we prove the above result for all groups of odd order. The proof for groups of even order needs to overcome substantial additional obstacles and will be presented in the second part of this series.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"173 ","pages":"Pages 246-256"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000243","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a finite (not necessarily abelian) group (Γ,), let n(Γ) denote the smallest positive integer n such that for each labelling of the arcs of the complete digraph of order n using elements from Γ, there exists a directed cycle such that the arc-labels along the cycle multiply to the identity. Alon and Krivelevich [2] initiated the study of the parameter n() on cyclic groups and proved n(Zq)=O(qlogq). This was later improved to a linear bound of n(Γ)8|Γ| for every finite abelian group by Mészáros and the last author [8], and then further to n(Γ)2|Γ|1 for every non-trivial finite group independently by Berendsohn, Boyadzhiyska and Kozma [3] as well as by Akrami, Alon, Chaudhury, Garg, Mehlhorn and Mehta [1].
In this series of two papers we conclude this line of research by proving that n(Γ)|Γ|+1 for every finite group (Γ,), which is the best possible such bound in terms of the group order and precisely determines the value of n(Γ) for all cyclic groups as n(Zq)=q+1.
In the present paper we prove the above result for all groups of odd order. The proof for groups of even order needs to overcome substantial additional obstacles and will be presented in the second part of this series.
零和循环的最优边界。I. 奇数阶
对于有限(不一定是阿贝尔)群(Γ,⋅),设n(Γ)表示最小的正整数n,使得对于使用Γ中的元素标记n阶的完全有向图的每个弧,存在一个有向循环,使得沿循环的弧标记乘以单位。Alon和Krivelevich[2]率先研究了n(⋅)在循环群上的参数,并证明了n(Zq)=O(qlog)。后来由Mészáros和最后一位作者[8]对每个有限阿贝群改进为n(Γ)≤8|Γ|的线性界,然后由Berendsohn, Boyadzhiyska和Kozma[3]以及Akrami, Alon, Chaudhury, Garg, Mehlhorn和Mehta[1]进一步改进为n(Γ)≤2|Γ|−1对每个非平凡有限群独立的线性界。在本系列的两篇论文中,我们通过证明n(Γ)≤|Γ|+1对于每一个有限群(Γ,⋅),这是群序的最佳可能界,并精确地决定了n(Γ)对于所有循环群的值为n(Zq)=q+1,从而总结了这条研究路线。本文对所有奇阶群证明了上述结果。偶序群的证明需要克服大量额外的障碍,这将在本系列的第二部分中介绍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信