{"title":"Weak diameter choosability of graphs with an excluded minor","authors":"Joshua Crouch, Chun-Hung Liu","doi":"10.1016/j.jctb.2025.04.005","DOIUrl":null,"url":null,"abstract":"<div><div>Weak diameter coloring of graphs recently attracted attention, partially due to its connection to asymptotic dimension of metric spaces. We consider weak diameter list-coloring of graphs in this paper. Dvořák and Norin proved that graphs with bounded Euler genus are 3-choosable with bounded weak diameter. In this paper, we extend their result by showing that for every graph <em>H</em>, <em>H</em>-minor free graphs are 3-choosable with bounded weak diameter. The upper bound 3 is optimal and it strengthens an earlier result for non-list-coloring <em>H</em>-minor free graphs with bounded weak diameter. As a corollary, <em>H</em>-minor free graphs with bounded maximum degree are 3-choosable with bounded clustering, strengthening an earlier result for non-list-coloring.</div><div>When <em>H</em> is planar, we prove a much stronger result: for every 2-list-assignment <em>L</em> of an <em>H</em>-minor free graph, every precoloring with bounded weak diameter can be extended to an <em>L</em>-coloring with bounded weak diameter. It is a common generalization of earlier results for non-list-coloring with bounded weak diameter and for list-coloring with bounded clustering without allowing precolorings. As a corollary, for any planar graph <em>H</em> and <em>H</em>-minor free graph <em>G</em>, there are exponentially many list-colorings of <em>G</em> with bounded weak diameter (and with bounded clustering if <em>G</em> also has bounded maximum degree); and every graph with bounded layered tree-width and bounded maximum degree has exponentially many 3-colorings with bounded clustering.</div><div>We also show that the aforementioned results for list-coloring cannot be extended to odd minor free graphs by showing that some bipartite graphs with maximum degree Δ are <em>k</em>-choosable with bounded weak diameter only when <span><math><mi>k</mi><mo>=</mo><mi>Ω</mi><mo>(</mo><mi>log</mi><mo></mo><mi>Δ</mi><mo>/</mo><mi>log</mi><mo></mo><mi>log</mi><mo></mo><mi>Δ</mi><mo>)</mo></math></span>. On the other hand, we show that odd <em>H</em>-minor graphs are 3-colorable with bounded weak diameter, implying an earlier result about clustered coloring of odd <em>H</em>-minor free graphs with bounded maximum degree.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"174 ","pages":"Pages 28-70"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000267","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Weak diameter coloring of graphs recently attracted attention, partially due to its connection to asymptotic dimension of metric spaces. We consider weak diameter list-coloring of graphs in this paper. Dvořák and Norin proved that graphs with bounded Euler genus are 3-choosable with bounded weak diameter. In this paper, we extend their result by showing that for every graph H, H-minor free graphs are 3-choosable with bounded weak diameter. The upper bound 3 is optimal and it strengthens an earlier result for non-list-coloring H-minor free graphs with bounded weak diameter. As a corollary, H-minor free graphs with bounded maximum degree are 3-choosable with bounded clustering, strengthening an earlier result for non-list-coloring.
When H is planar, we prove a much stronger result: for every 2-list-assignment L of an H-minor free graph, every precoloring with bounded weak diameter can be extended to an L-coloring with bounded weak diameter. It is a common generalization of earlier results for non-list-coloring with bounded weak diameter and for list-coloring with bounded clustering without allowing precolorings. As a corollary, for any planar graph H and H-minor free graph G, there are exponentially many list-colorings of G with bounded weak diameter (and with bounded clustering if G also has bounded maximum degree); and every graph with bounded layered tree-width and bounded maximum degree has exponentially many 3-colorings with bounded clustering.
We also show that the aforementioned results for list-coloring cannot be extended to odd minor free graphs by showing that some bipartite graphs with maximum degree Δ are k-choosable with bounded weak diameter only when . On the other hand, we show that odd H-minor graphs are 3-colorable with bounded weak diameter, implying an earlier result about clustered coloring of odd H-minor free graphs with bounded maximum degree.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.