Embedding connected factorizations II

IF 1.2 1区 数学 Q1 MATHEMATICS
Amin Bahmanian , Anna Johnsen-Yu
{"title":"Embedding connected factorizations II","authors":"Amin Bahmanian ,&nbsp;Anna Johnsen-Yu","doi":"10.1016/j.jctb.2025.03.003","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>λ</mi><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>h</mi></mrow></msubsup></math></span> be the complete <em>h</em>-uniform <em>n</em>-vertex hypergraph in which each edge is repeated <em>λ</em> times. For <span><math><mi>r</mi><mo>:</mo><mo>=</mo><mo>(</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span>, a <em>(partial)</em> <strong>r</strong><em>-factorization</em> of <span><math><mi>λ</mi><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>h</mi></mrow></msubsup></math></span> is a partition of the edges of <span><math><mi>λ</mi><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>h</mi></mrow></msubsup></math></span> into factors <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> such that each factor is spanning and the degree of all vertices in each <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is (at most) <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. Suppose that <span><math><mi>n</mi><mo>≥</mo><mo>(</mo><mi>h</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mn>2</mn><mi>m</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. We establish necessary and sufficient conditions that ensure a partial <strong>r</strong>-factorization of <span><math><mi>λ</mi><msubsup><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>h</mi></mrow></msubsup></math></span> can be embedded in a connected <strong>r</strong>-factorization of <span><math><mi>λ</mi><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>h</mi></mrow></msubsup></math></span>. Moreover, we prove a general result which leads to a complete characterization of partial <span><math><mo>(</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span>-factorizations of <em>any</em> sub-hypergraph of <span><math><mi>λ</mi><msubsup><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>h</mi></mrow></msubsup></math></span> in connected <strong>r</strong>-factorizations of <span><math><mi>λ</mi><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>h</mi></mrow></msubsup></math></span> so long as <em>q</em> meets a natural upper bound. These results can be seen as unified generalizations of many classical combinatorial results, and can also be restated as results on embedding partial symmetric latin hypercubes.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"173 ","pages":"Pages 374-398"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000206","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let λKnh be the complete h-uniform n-vertex hypergraph in which each edge is repeated λ times. For r:=(r1,,rk), a (partial) r-factorization of λKnh is a partition of the edges of λKnh into factors F1,,Fk such that each factor is spanning and the degree of all vertices in each Fi is (at most) ri. Suppose that n(h1)(2m1). We establish necessary and sufficient conditions that ensure a partial r-factorization of λKmh can be embedded in a connected r-factorization of λKnh. Moreover, we prove a general result which leads to a complete characterization of partial (s1,,sq)-factorizations of any sub-hypergraph of λKmh in connected r-factorizations of λKnh so long as q meets a natural upper bound. These results can be seen as unified generalizations of many classical combinatorial results, and can also be restated as results on embedding partial symmetric latin hypercubes.
嵌入连通分解II
设λ knh为每条边重复λ次的完全h-均匀n顶点超图。对于r:=(r1,…,rk), λKnh的(部分)r-分解是将λKnh的边划分为因子F1,…,Fk,使得每个因子都是生成的,并且每个Fi中所有顶点的度数(最多)为ri。设n≥(h−1)(2m−1)。建立了λKmh的部分r因子分解可以嵌入到λ kh的连通r因子分解中的充分必要条件。此外,我们证明了一个一般结果,该结果使得λKmh的任何子超图在λKnh的连通r-分解中,只要q满足自然上界,就可以得到部分(s1,…,sq)分解的完全刻画。这些结果可以看作是许多经典组合结果的统一推广,也可以重述为嵌入偏对称拉丁超立方体的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信