Haar graphical representations of finite groups and an application to poset representations

IF 1.2 1区 数学 Q1 MATHEMATICS
Joy Morris , Pablo Spiga
{"title":"Haar graphical representations of finite groups and an application to poset representations","authors":"Joy Morris ,&nbsp;Pablo Spiga","doi":"10.1016/j.jctb.2025.04.001","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>R</em> be a group and let <em>S</em> be a subset of <em>R</em>. The Haar graph <span><math><mrow><mi>Haar</mi></mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>)</mo></math></span> of <em>R</em> with connection set <em>S</em> is the graph having vertex set <span><math><mi>R</mi><mo>×</mo><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>, where two distinct vertices <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>y</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span> are declared to be adjacent if and only if <span><math><mi>y</mi><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>∈</mo><mi>S</mi></math></span>. The name Haar graph was coined by Tomaž Pisanski in one of the first investigations on this class of graphs.</div><div>For every <span><math><mi>g</mi><mo>∈</mo><mi>R</mi></math></span>, the mapping <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>:</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>ε</mi><mo>)</mo><mo>↦</mo><mo>(</mo><mi>x</mi><mi>g</mi><mo>,</mo><mi>ε</mi><mo>)</mo></math></span>, <span><math><mo>∀</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>ε</mi><mo>)</mo><mo>∈</mo><mi>R</mi><mo>×</mo><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>, is an automorphism of <span><math><mrow><mi>Haar</mi></mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>)</mo></math></span>. In particular, the set <span><math><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>:</mo><mo>=</mo><mo>{</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>|</mo><mi>g</mi><mo>∈</mo><mi>R</mi><mo>}</mo></math></span> is a subgroup of the automorphism group of <span><math><mrow><mi>Haar</mi></mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>)</mo></math></span> isomorphic to <em>R</em>. In the case that the automorphism group of <span><math><mrow><mi>Haar</mi></mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>)</mo></math></span> equals <span><math><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>, the Haar graph <span><math><mrow><mi>Haar</mi></mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>)</mo></math></span> is said to be a Haar graphical representation of the group <em>R</em>.</div><div>Answering a question of Feng, Kovács, Wang, and Yang, we classify the finite groups admitting a Haar graphical representation. Specifically, we show that every finite group admits a Haar graphical representation, with abelian groups and ten other small groups as the only exceptions.</div><div>Our work on Haar graphs allows us to improve a 1980 result of Babai concerning representations of groups on posets, achieving the best possible result in this direction. An improvement to Babai's related result on representations of groups on distributive lattices follows.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"173 ","pages":"Pages 279-304"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009589562500022X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let R be a group and let S be a subset of R. The Haar graph Haar(R,S) of R with connection set S is the graph having vertex set R×{1,1}, where two distinct vertices (x,1) and (y,1) are declared to be adjacent if and only if yx1S. The name Haar graph was coined by Tomaž Pisanski in one of the first investigations on this class of graphs.
For every gR, the mapping ρg:(x,ε)(xg,ε), (x,ε)R×{1,1}, is an automorphism of Haar(R,S). In particular, the set Rˆ:={ρg|gR} is a subgroup of the automorphism group of Haar(R,S) isomorphic to R. In the case that the automorphism group of Haar(R,S) equals Rˆ, the Haar graph Haar(R,S) is said to be a Haar graphical representation of the group R.
Answering a question of Feng, Kovács, Wang, and Yang, we classify the finite groups admitting a Haar graphical representation. Specifically, we show that every finite group admits a Haar graphical representation, with abelian groups and ten other small groups as the only exceptions.
Our work on Haar graphs allows us to improve a 1980 result of Babai concerning representations of groups on posets, achieving the best possible result in this direction. An improvement to Babai's related result on representations of groups on distributive lattices follows.
有限群的图解表示及其在偏置集表示中的应用
设R是一个群,S是R的一个子集。具有连接集S的R的Haar图Haar(R,S)是具有顶点集rx{- 1,1}的图,其中两个不同的顶点(x, - 1)和(y,1)被声明为相邻当且仅当x - 1∈S。Haar图这个名字是由tomajov Pisanski在对这类图的第一次研究中创造的。每g∈R映射ρg: (x,ε)↦(xgε)∀(x,ε)∈R×{−1,1},是哈尔(R, S)的自同构。特别地,集合R:={ρg|g∈R}是与R同构的Haar(R,S)的自同构群的一子群。在Haar(R,S)的自同构群等于R的情况下,我们称Haar图Haar(R,S)是群R的一个Haar图表示。具体地说,我们证明了除了阿贝尔群和其他10个小群外,每个有限群都有一个Haar图表示。我们在Haar图上的工作使我们能够改进Babai在1980年关于群在偏置集上表示的结果,在这个方向上取得了最好的结果。对Babai关于群在分布格上表示的相关结果进行了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信