{"title":"有限群的图解表示及其在偏置集表示中的应用","authors":"Joy Morris , Pablo Spiga","doi":"10.1016/j.jctb.2025.04.001","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>R</em> be a group and let <em>S</em> be a subset of <em>R</em>. The Haar graph <span><math><mrow><mi>Haar</mi></mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>)</mo></math></span> of <em>R</em> with connection set <em>S</em> is the graph having vertex set <span><math><mi>R</mi><mo>×</mo><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>, where two distinct vertices <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>y</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span> are declared to be adjacent if and only if <span><math><mi>y</mi><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>∈</mo><mi>S</mi></math></span>. The name Haar graph was coined by Tomaž Pisanski in one of the first investigations on this class of graphs.</div><div>For every <span><math><mi>g</mi><mo>∈</mo><mi>R</mi></math></span>, the mapping <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>:</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>ε</mi><mo>)</mo><mo>↦</mo><mo>(</mo><mi>x</mi><mi>g</mi><mo>,</mo><mi>ε</mi><mo>)</mo></math></span>, <span><math><mo>∀</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>ε</mi><mo>)</mo><mo>∈</mo><mi>R</mi><mo>×</mo><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>, is an automorphism of <span><math><mrow><mi>Haar</mi></mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>)</mo></math></span>. In particular, the set <span><math><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>:</mo><mo>=</mo><mo>{</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>|</mo><mi>g</mi><mo>∈</mo><mi>R</mi><mo>}</mo></math></span> is a subgroup of the automorphism group of <span><math><mrow><mi>Haar</mi></mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>)</mo></math></span> isomorphic to <em>R</em>. In the case that the automorphism group of <span><math><mrow><mi>Haar</mi></mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>)</mo></math></span> equals <span><math><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>, the Haar graph <span><math><mrow><mi>Haar</mi></mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>)</mo></math></span> is said to be a Haar graphical representation of the group <em>R</em>.</div><div>Answering a question of Feng, Kovács, Wang, and Yang, we classify the finite groups admitting a Haar graphical representation. Specifically, we show that every finite group admits a Haar graphical representation, with abelian groups and ten other small groups as the only exceptions.</div><div>Our work on Haar graphs allows us to improve a 1980 result of Babai concerning representations of groups on posets, achieving the best possible result in this direction. An improvement to Babai's related result on representations of groups on distributive lattices follows.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"173 ","pages":"Pages 279-304"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Haar graphical representations of finite groups and an application to poset representations\",\"authors\":\"Joy Morris , Pablo Spiga\",\"doi\":\"10.1016/j.jctb.2025.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>R</em> be a group and let <em>S</em> be a subset of <em>R</em>. The Haar graph <span><math><mrow><mi>Haar</mi></mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>)</mo></math></span> of <em>R</em> with connection set <em>S</em> is the graph having vertex set <span><math><mi>R</mi><mo>×</mo><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>, where two distinct vertices <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>y</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span> are declared to be adjacent if and only if <span><math><mi>y</mi><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>∈</mo><mi>S</mi></math></span>. The name Haar graph was coined by Tomaž Pisanski in one of the first investigations on this class of graphs.</div><div>For every <span><math><mi>g</mi><mo>∈</mo><mi>R</mi></math></span>, the mapping <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>:</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>ε</mi><mo>)</mo><mo>↦</mo><mo>(</mo><mi>x</mi><mi>g</mi><mo>,</mo><mi>ε</mi><mo>)</mo></math></span>, <span><math><mo>∀</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>ε</mi><mo>)</mo><mo>∈</mo><mi>R</mi><mo>×</mo><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>, is an automorphism of <span><math><mrow><mi>Haar</mi></mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>)</mo></math></span>. In particular, the set <span><math><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>:</mo><mo>=</mo><mo>{</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>|</mo><mi>g</mi><mo>∈</mo><mi>R</mi><mo>}</mo></math></span> is a subgroup of the automorphism group of <span><math><mrow><mi>Haar</mi></mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>)</mo></math></span> isomorphic to <em>R</em>. In the case that the automorphism group of <span><math><mrow><mi>Haar</mi></mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>)</mo></math></span> equals <span><math><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>, the Haar graph <span><math><mrow><mi>Haar</mi></mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>)</mo></math></span> is said to be a Haar graphical representation of the group <em>R</em>.</div><div>Answering a question of Feng, Kovács, Wang, and Yang, we classify the finite groups admitting a Haar graphical representation. Specifically, we show that every finite group admits a Haar graphical representation, with abelian groups and ten other small groups as the only exceptions.</div><div>Our work on Haar graphs allows us to improve a 1980 result of Babai concerning representations of groups on posets, achieving the best possible result in this direction. An improvement to Babai's related result on representations of groups on distributive lattices follows.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"173 \",\"pages\":\"Pages 279-304\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009589562500022X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009589562500022X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Haar graphical representations of finite groups and an application to poset representations
Let R be a group and let S be a subset of R. The Haar graph of R with connection set S is the graph having vertex set , where two distinct vertices and are declared to be adjacent if and only if . The name Haar graph was coined by Tomaž Pisanski in one of the first investigations on this class of graphs.
For every , the mapping , , is an automorphism of . In particular, the set is a subgroup of the automorphism group of isomorphic to R. In the case that the automorphism group of equals , the Haar graph is said to be a Haar graphical representation of the group R.
Answering a question of Feng, Kovács, Wang, and Yang, we classify the finite groups admitting a Haar graphical representation. Specifically, we show that every finite group admits a Haar graphical representation, with abelian groups and ten other small groups as the only exceptions.
Our work on Haar graphs allows us to improve a 1980 result of Babai concerning representations of groups on posets, achieving the best possible result in this direction. An improvement to Babai's related result on representations of groups on distributive lattices follows.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.