伪段的一个结构定理及其应用

IF 1.2 1区 数学 Q1 MATHEMATICS
Jacob Fox , János Pach , Andrew Suk
{"title":"伪段的一个结构定理及其应用","authors":"Jacob Fox ,&nbsp;János Pach ,&nbsp;Andrew Suk","doi":"10.1016/j.jctb.2025.04.007","DOIUrl":null,"url":null,"abstract":"<div><div>We prove a far-reaching strengthening of Szemerédi's regularity lemma for intersection graphs of pseudosegments. It shows that the vertex set of such a graph can be partitioned into a bounded number of parts of roughly the same size such that almost all bipartite graphs between different pairs of parts are <em>complete</em> or <em>empty</em>. We use this to get an improved bound on disjoint edges in simple topological graphs, showing that every <em>n</em>-vertex simple topological graph with no <em>k</em> pairwise disjoint edges has at most <span><math><mi>n</mi><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></mrow><mrow><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> edges.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"174 ","pages":"Pages 99-132"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A structure theorem for pseudosegments and its applications\",\"authors\":\"Jacob Fox ,&nbsp;János Pach ,&nbsp;Andrew Suk\",\"doi\":\"10.1016/j.jctb.2025.04.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove a far-reaching strengthening of Szemerédi's regularity lemma for intersection graphs of pseudosegments. It shows that the vertex set of such a graph can be partitioned into a bounded number of parts of roughly the same size such that almost all bipartite graphs between different pairs of parts are <em>complete</em> or <em>empty</em>. We use this to get an improved bound on disjoint edges in simple topological graphs, showing that every <em>n</em>-vertex simple topological graph with no <em>k</em> pairwise disjoint edges has at most <span><math><mi>n</mi><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></mrow><mrow><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> edges.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"174 \",\"pages\":\"Pages 99-132\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895625000280\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000280","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了伪段相交图的szemersamudi正则引理的一个意义深远的强化。证明了这种图的顶点集可以被分割成有限个大小大致相同的部分,使得不同部分对之间的二部图几乎都是完全的或空的。我们用它得到了简单拓扑图中不相交边的改进界,证明了每一个没有k对不相交边的n顶点简单拓扑图最多有n(log log n)O(log k)条边。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A structure theorem for pseudosegments and its applications
We prove a far-reaching strengthening of Szemerédi's regularity lemma for intersection graphs of pseudosegments. It shows that the vertex set of such a graph can be partitioned into a bounded number of parts of roughly the same size such that almost all bipartite graphs between different pairs of parts are complete or empty. We use this to get an improved bound on disjoint edges in simple topological graphs, showing that every n-vertex simple topological graph with no k pairwise disjoint edges has at most n(logn)O(logk) edges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信