Induced C4-free subgraphs with large average degree

IF 1.2 1区 数学 Q1 MATHEMATICS
Xiying Du , António Girão , Zach Hunter , Rose McCarty , Alex Scott
{"title":"Induced C4-free subgraphs with large average degree","authors":"Xiying Du ,&nbsp;António Girão ,&nbsp;Zach Hunter ,&nbsp;Rose McCarty ,&nbsp;Alex Scott","doi":"10.1016/j.jctb.2025.04.002","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that there exists a constant <em>C</em> so that, for all <span><math><mi>s</mi><mo>,</mo><mi>k</mi><mo>∈</mo><mi>N</mi></math></span>, if <em>G</em> has average degree at least <span><math><msup><mrow><mi>k</mi></mrow><mrow><mi>C</mi><msup><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msup></math></span> and does not contain <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span> as a subgraph then it contains an induced subgraph which is <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free and has average degree at least <em>k</em>. It was known that some function of <em>s</em> and <em>k</em> suffices, but this is the first explicit bound. We give several applications of this result, including short and streamlined proofs of the following two corollaries.</div><div>We show that there exists a constant <em>C</em> so that, for all <span><math><mi>s</mi><mo>,</mo><mi>k</mi><mo>∈</mo><mi>N</mi></math></span>, if <em>G</em> has average degree at least <span><math><msup><mrow><mi>k</mi></mrow><mrow><mi>C</mi><msup><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msup></math></span> and does not contain <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span> as a subgraph then it contains an induced subdivision of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>. This is the first quantitative improvement on a well-known theorem of Kühn and Osthus; their proof gives a bound that is triply exponential in both <em>k</em> and <em>s</em>.</div><div>We also show that for any hereditary degree-bounded class <span><math><mi>F</mi></math></span>, there exists a constant <span><math><mi>C</mi><mo>=</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> so that <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msup></math></span> is a degree-bounding function for <span><math><mi>F</mi></math></span>. This is the first bound of any type on the rate of growth of such functions.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"173 ","pages":"Pages 305-328"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000231","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that there exists a constant C so that, for all s,kN, if G has average degree at least kCs3 and does not contain Ks,s as a subgraph then it contains an induced subgraph which is C4-free and has average degree at least k. It was known that some function of s and k suffices, but this is the first explicit bound. We give several applications of this result, including short and streamlined proofs of the following two corollaries.
We show that there exists a constant C so that, for all s,kN, if G has average degree at least kCs3 and does not contain Ks,s as a subgraph then it contains an induced subdivision of Kk. This is the first quantitative improvement on a well-known theorem of Kühn and Osthus; their proof gives a bound that is triply exponential in both k and s.
We also show that for any hereditary degree-bounded class F, there exists a constant C=CF so that Cs3 is a degree-bounding function for F. This is the first bound of any type on the rate of growth of such functions.
具有较大平均度的无 C4 子图
我们证明了存在一个常数C,使得对于所有s,k∈N,如果G的平均度至少为kCs3且不包含Ks,s作为子图,则它包含一个不含c4且平均度至少为k的诱导子图。已知s和k的某个函数是足够的,但这是第一个显式界。我们给出了这个结果的几个应用,包括以下两个推论的简短和简化的证明。我们证明了存在一个常数C,使得对于所有s,k∈N,如果G的平均度至少为kCs3,并且不包含Ks,s作为子图,则它包含Kk的诱导子图。这是对k hn和Osthus的一个著名定理的第一个定量改进;他们的证明给出了一个在k和s上都是三指数的界。我们还证明了对于任何遗传度有界类F,存在一个常数C=CF,使得Cs3是F的一个度有界函数。这是关于这类函数增长率的任何类型的第一个界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信