图中谱半径和Perron向量的局部性质

IF 1.2 1区 数学 Q1 MATHEMATICS
Lele Liu , Bo Ning
{"title":"图中谱半径和Perron向量的局部性质","authors":"Lele Liu ,&nbsp;Bo Ning","doi":"10.1016/j.jctb.2025.09.001","DOIUrl":null,"url":null,"abstract":"<div><div>In 2002, Nikiforov proved that for an <em>n</em>-vertex graph <em>G</em> with clique number <em>ω</em> and edge number <em>m</em>, its spectral radius <span><math><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> satisfies <span><math><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><msqrt><mrow><mn>2</mn><mo>(</mo><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>ω</mi><mo>)</mo><mi>m</mi></mrow></msqrt></math></span>, which confirmed a conjecture implicitly suggested by Edwards and Elphick. In this paper, we prove a local version of spectral Turán inequality, showing that <span><math><msup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>2</mn><msub><mrow><mo>∑</mo></mrow><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mfrac><mrow><mi>c</mi><mo>(</mo><mi>e</mi><mo>)</mo><mo>−</mo><mn>1</mn></mrow><mrow><mi>c</mi><mo>(</mo><mi>e</mi><mo>)</mo></mrow></mfrac></math></span>, where <span><math><mi>c</mi><mo>(</mo><mi>e</mi><mo>)</mo></math></span> is the order of the largest clique containing the edge <em>e</em> in <em>G</em>. We also characterize the extremal graphs. Furthermore, we prove that our theorem implies Nikiforov's theorem and provide an example in which the difference of Nikiforov's bound and ours is <span><math><mi>Ω</mi><mo>(</mo><msqrt><mrow><mi>m</mi></mrow></msqrt><mo>)</mo></math></span> for some cases. Our second result explores local properties of the Perron vector of graphs. We disprove a conjecture of Gregory, asserting that for a connected <em>n</em>-vertex graph <em>G</em> with chromatic number <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> and an independent set <em>S</em>, we have<span><span><span><math><munder><mo>∑</mo><mrow><mi>v</mi><mo>∈</mo><mi>S</mi></mrow></munder><msubsup><mrow><mi>x</mi></mrow><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><mi>k</mi><mo>−</mo><mn>2</mn></mrow><mrow><mn>2</mn><msqrt><mrow><msup><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>4</mn><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msqrt></mrow></mfrac><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>v</mi></mrow></msub></math></span> is the component of the Perron vector of <em>G</em> with respect to the vertex <em>v</em>. A modified version of Gregory's conjecture is proposed.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"176 ","pages":"Pages 241-253"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local properties of the spectral radius and Perron vector in graphs\",\"authors\":\"Lele Liu ,&nbsp;Bo Ning\",\"doi\":\"10.1016/j.jctb.2025.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In 2002, Nikiforov proved that for an <em>n</em>-vertex graph <em>G</em> with clique number <em>ω</em> and edge number <em>m</em>, its spectral radius <span><math><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> satisfies <span><math><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><msqrt><mrow><mn>2</mn><mo>(</mo><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>ω</mi><mo>)</mo><mi>m</mi></mrow></msqrt></math></span>, which confirmed a conjecture implicitly suggested by Edwards and Elphick. In this paper, we prove a local version of spectral Turán inequality, showing that <span><math><msup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>2</mn><msub><mrow><mo>∑</mo></mrow><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mfrac><mrow><mi>c</mi><mo>(</mo><mi>e</mi><mo>)</mo><mo>−</mo><mn>1</mn></mrow><mrow><mi>c</mi><mo>(</mo><mi>e</mi><mo>)</mo></mrow></mfrac></math></span>, where <span><math><mi>c</mi><mo>(</mo><mi>e</mi><mo>)</mo></math></span> is the order of the largest clique containing the edge <em>e</em> in <em>G</em>. We also characterize the extremal graphs. Furthermore, we prove that our theorem implies Nikiforov's theorem and provide an example in which the difference of Nikiforov's bound and ours is <span><math><mi>Ω</mi><mo>(</mo><msqrt><mrow><mi>m</mi></mrow></msqrt><mo>)</mo></math></span> for some cases. Our second result explores local properties of the Perron vector of graphs. We disprove a conjecture of Gregory, asserting that for a connected <em>n</em>-vertex graph <em>G</em> with chromatic number <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> and an independent set <em>S</em>, we have<span><span><span><math><munder><mo>∑</mo><mrow><mi>v</mi><mo>∈</mo><mi>S</mi></mrow></munder><msubsup><mrow><mi>x</mi></mrow><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><mi>k</mi><mo>−</mo><mn>2</mn></mrow><mrow><mn>2</mn><msqrt><mrow><msup><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>4</mn><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msqrt></mrow></mfrac><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>v</mi></mrow></msub></math></span> is the component of the Perron vector of <em>G</em> with respect to the vertex <em>v</em>. A modified version of Gregory's conjecture is proposed.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"176 \",\"pages\":\"Pages 241-253\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009589562500070X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009589562500070X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

2002年,Nikiforov证明了对于团数为ω,边数为m的n顶点图G,其谱半径λ(G)满足λ(G)≤2(1−1/ω)m,证实了Edwards和Elphick隐式提出的一个猜想。本文证明了谱Turán不等式的一个局部版本,证明了λ2(G)≤2∑e∈e (G)c(e)−1c(e),其中c(e)是G中包含边e的最大团的阶,并刻画了极值图。进一步证明了我们的定理蕴涵了Nikiforov定理,并给出了在某些情况下Nikiforov界与我们的界之差为Ω(m)的一个例子。我们的第二个结果探讨了图的Perron向量的局部性质。我们证明了Gregory的一个猜想,证明了对于色数k≥2的连通n顶点图G和独立集S,有∑v∈Sxv2≤12−k−22(k−2)2+4(k−1)(n−k+1),其中xv是G关于顶点v的Perron向量的分量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local properties of the spectral radius and Perron vector in graphs
In 2002, Nikiforov proved that for an n-vertex graph G with clique number ω and edge number m, its spectral radius λ(G) satisfies λ(G)2(11/ω)m, which confirmed a conjecture implicitly suggested by Edwards and Elphick. In this paper, we prove a local version of spectral Turán inequality, showing that λ2(G)2eE(G)c(e)1c(e), where c(e) is the order of the largest clique containing the edge e in G. We also characterize the extremal graphs. Furthermore, we prove that our theorem implies Nikiforov's theorem and provide an example in which the difference of Nikiforov's bound and ours is Ω(m) for some cases. Our second result explores local properties of the Perron vector of graphs. We disprove a conjecture of Gregory, asserting that for a connected n-vertex graph G with chromatic number k2 and an independent set S, we havevSxv212k22(k2)2+4(k1)(nk+1), where xv is the component of the Perron vector of G with respect to the vertex v. A modified version of Gregory's conjecture is proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信