{"title":"具有独立性为2的图的密集子图","authors":"Sergey Norin , Paul Seymour","doi":"10.1016/j.jctb.2025.08.005","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by Hadwiger's conjecture, we prove that every graph with no independent set of size three contains a <em>t</em>-vertex simple minor with<span><span><span><math><mn>0.98688</mn><mo>⋅</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>t</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mi>o</mi><mo>(</mo><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span></span></span> edges, where <em>t</em> is its chromatic number.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"176 ","pages":"Pages 101-110"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dense minors of graphs with independence number two\",\"authors\":\"Sergey Norin , Paul Seymour\",\"doi\":\"10.1016/j.jctb.2025.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Motivated by Hadwiger's conjecture, we prove that every graph with no independent set of size three contains a <em>t</em>-vertex simple minor with<span><span><span><math><mn>0.98688</mn><mo>⋅</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>t</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mi>o</mi><mo>(</mo><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span></span></span> edges, where <em>t</em> is its chromatic number.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"176 \",\"pages\":\"Pages 101-110\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895625000619\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000619","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Dense minors of graphs with independence number two
Motivated by Hadwiger's conjecture, we prove that every graph with no independent set of size three contains a t-vertex simple minor with edges, where t is its chromatic number.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.