{"title":"Local properties of the spectral radius and Perron vector in graphs","authors":"Lele Liu , Bo Ning","doi":"10.1016/j.jctb.2025.09.001","DOIUrl":null,"url":null,"abstract":"<div><div>In 2002, Nikiforov proved that for an <em>n</em>-vertex graph <em>G</em> with clique number <em>ω</em> and edge number <em>m</em>, its spectral radius <span><math><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> satisfies <span><math><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><msqrt><mrow><mn>2</mn><mo>(</mo><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>ω</mi><mo>)</mo><mi>m</mi></mrow></msqrt></math></span>, which confirmed a conjecture implicitly suggested by Edwards and Elphick. In this paper, we prove a local version of spectral Turán inequality, showing that <span><math><msup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>2</mn><msub><mrow><mo>∑</mo></mrow><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mfrac><mrow><mi>c</mi><mo>(</mo><mi>e</mi><mo>)</mo><mo>−</mo><mn>1</mn></mrow><mrow><mi>c</mi><mo>(</mo><mi>e</mi><mo>)</mo></mrow></mfrac></math></span>, where <span><math><mi>c</mi><mo>(</mo><mi>e</mi><mo>)</mo></math></span> is the order of the largest clique containing the edge <em>e</em> in <em>G</em>. We also characterize the extremal graphs. Furthermore, we prove that our theorem implies Nikiforov's theorem and provide an example in which the difference of Nikiforov's bound and ours is <span><math><mi>Ω</mi><mo>(</mo><msqrt><mrow><mi>m</mi></mrow></msqrt><mo>)</mo></math></span> for some cases. Our second result explores local properties of the Perron vector of graphs. We disprove a conjecture of Gregory, asserting that for a connected <em>n</em>-vertex graph <em>G</em> with chromatic number <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> and an independent set <em>S</em>, we have<span><span><span><math><munder><mo>∑</mo><mrow><mi>v</mi><mo>∈</mo><mi>S</mi></mrow></munder><msubsup><mrow><mi>x</mi></mrow><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><mi>k</mi><mo>−</mo><mn>2</mn></mrow><mrow><mn>2</mn><msqrt><mrow><msup><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>4</mn><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msqrt></mrow></mfrac><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>v</mi></mrow></msub></math></span> is the component of the Perron vector of <em>G</em> with respect to the vertex <em>v</em>. A modified version of Gregory's conjecture is proposed.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"176 ","pages":"Pages 241-253"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009589562500070X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In 2002, Nikiforov proved that for an n-vertex graph G with clique number ω and edge number m, its spectral radius satisfies , which confirmed a conjecture implicitly suggested by Edwards and Elphick. In this paper, we prove a local version of spectral Turán inequality, showing that , where is the order of the largest clique containing the edge e in G. We also characterize the extremal graphs. Furthermore, we prove that our theorem implies Nikiforov's theorem and provide an example in which the difference of Nikiforov's bound and ours is for some cases. Our second result explores local properties of the Perron vector of graphs. We disprove a conjecture of Gregory, asserting that for a connected n-vertex graph G with chromatic number and an independent set S, we have where is the component of the Perron vector of G with respect to the vertex v. A modified version of Gregory's conjecture is proposed.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.