EPJ Quantum Technology最新文献

筛选
英文 中文
Different secure semi-quantum summation models without measurement 无需测量的不同安全半量子求和模型
IF 5.3 2区 物理与天体物理
EPJ Quantum Technology Pub Date : 2024-05-22 DOI: 10.1140/epjqt/s40507-024-00247-9
Yuan Tian, Nanyijia Zhang, Chongqiang Ye, Genqing Bian, Jian Li
{"title":"Different secure semi-quantum summation models without measurement","authors":"Yuan Tian,&nbsp;Nanyijia Zhang,&nbsp;Chongqiang Ye,&nbsp;Genqing Bian,&nbsp;Jian Li","doi":"10.1140/epjqt/s40507-024-00247-9","DOIUrl":"10.1140/epjqt/s40507-024-00247-9","url":null,"abstract":"<div><p>Secure semi-quantum summation entails the collective computation of the sum of private secrets by multi-untrustworthy and resource-limited participants, facilitated by a quantum third-party. This paper introduces three semi-quantum summation protocols based on single photons, where eliminating the need for classical users to possess measurement capabilities. Two-party protocol 1 and protocol 2 are structured upon different models: star and ring, respectively. The security analysis extensively evaluates the protocols’ resilience against outside and inside attacks, demonstrating protocols are asymptotically secure. Protocol 3 extends two-party protocol 1 to multi-party scenarios, broadening its applicability. Comparison reveals a reduction in the workload for classical users compared to previous similar protocols, and the protocols’ correctness are visually validated through simulation by Qiskit.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00247-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141084965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Holonomic swap and controlled-swap gates of neutral atoms via selective Rydberg pumping 通过选择性雷德贝格泵浦实现中性原子的整体交换和受控交换门
IF 5.3 2区 物理与天体物理
EPJ Quantum Technology Pub Date : 2024-05-21 DOI: 10.1140/epjqt/s40507-024-00246-w
C. F. Sun, X. Y. Chen, W. L. Mu, G. C. Wang, J. B. You, X. Q. Shao
{"title":"Holonomic swap and controlled-swap gates of neutral atoms via selective Rydberg pumping","authors":"C. F. Sun,&nbsp;X. Y. Chen,&nbsp;W. L. Mu,&nbsp;G. C. Wang,&nbsp;J. B. You,&nbsp;X. Q. Shao","doi":"10.1140/epjqt/s40507-024-00246-w","DOIUrl":"10.1140/epjqt/s40507-024-00246-w","url":null,"abstract":"<div><p>Holonomic quantum computing offers a promising paradigm for quantum computation due to its error resistance and the ability to perform universal quantum computations. Here, we propose a scheme for the rapid implementation of a holonomic swap gate in neutral atomic systems, based on the selective Rydberg pumping mechanism. By employing time-dependent soft control, we effectively mitigate the impact of off-resonant terms even at higher driving intensities compared to time-independent driving. This approach accelerates the synthesis of logic gates and passively reduces the decoherence effects. Furthermore, by introducing an additional atom and applying the appropriate driving field, our scheme can be directly extended to implement a three-qubit controlled-swap gate. This advancement makes it a valuable tool for quantum state preparation, quantum switches, and a variational quantum algorithm in neutral atom systems.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00246-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141078888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spooky action at a distance? A two-phase study into learners’ views of quantum entanglement 超距作用?分两个阶段研究学习者对量子纠缠的看法
IF 5.3 2区 物理与天体物理
EPJ Quantum Technology Pub Date : 2024-05-10 DOI: 10.1140/epjqt/s40507-024-00244-y
Michael Brang, Helena Franke, Franziska Greinert, Malte S. Ubben, Fabian Hennig, Philipp Bitzenbauer
{"title":"Spooky action at a distance? A two-phase study into learners’ views of quantum entanglement","authors":"Michael Brang,&nbsp;Helena Franke,&nbsp;Franziska Greinert,&nbsp;Malte S. Ubben,&nbsp;Fabian Hennig,&nbsp;Philipp Bitzenbauer","doi":"10.1140/epjqt/s40507-024-00244-y","DOIUrl":"10.1140/epjqt/s40507-024-00244-y","url":null,"abstract":"<div><p>Quantum entanglement is a challenging concept within the field of physics education, often eluding a full grasp by both educators and learners alike. In this paper, we report findings from a two-phase empirical study into the views of entanglement held by pre-service physics teachers and physics students from various universities. In the first phase, we utilized a questionnaire consisting of open-ended questions which was completed by 31 pre-service physics teachers. The study participants’ ideas were explored using qualitative content analysis which led to the creation of rating scale items used in study phase 2. These items were administered to a broader cohort including 73 physics university students in order to capture the learners’ agreement or disagreement with the questionnaire statements, and hence, helped to validate and substantiate the in-depth insights from study phase 1. Key findings revealed widespread accurate notions, like the need to consider the entire system when examining entangled states. However, less elaborated views were also identified, including ideas such as that measurements of entangled states always show perfect (anti-)correlation. Another striking observation was the confusion between quantum entanglement and superposition. In the case of quantum teleportation, many participants seemed to have a basic grasp of the concept, although a number of misconceptions were apparent, notably the idea that quantum entanglement enables faster-than-light communication. Practically, the findings can assist educators in anticipating and addressing widespread (mis-)conceptions, paving the way for more effective instruction in quantum mechanics and its real-world applications, such as quantum cryptography and computing.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00244-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140902650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On-premises superconducting quantum computer for education and research 用于教育和研究的内部超导量子计算机
IF 5.3 2区 物理与天体物理
EPJ Quantum Technology Pub Date : 2024-04-29 DOI: 10.1140/epjqt/s40507-024-00243-z
Jami Rönkkö, Olli Ahonen, Ville Bergholm, Alessio Calzona, Attila Geresdi, Hermanni Heimonen, Johannes Heinsoo, Vladimir Milchakov, Stefan Pogorzalek, Matthew Sarsby, Mykhailo Savytskyi, Stefan Seegerer, Fedor Šimkovic IV, P. V. Sriluckshmy, Panu T. Vesanen, Mikio Nakahara
{"title":"On-premises superconducting quantum computer for education and research","authors":"Jami Rönkkö,&nbsp;Olli Ahonen,&nbsp;Ville Bergholm,&nbsp;Alessio Calzona,&nbsp;Attila Geresdi,&nbsp;Hermanni Heimonen,&nbsp;Johannes Heinsoo,&nbsp;Vladimir Milchakov,&nbsp;Stefan Pogorzalek,&nbsp;Matthew Sarsby,&nbsp;Mykhailo Savytskyi,&nbsp;Stefan Seegerer,&nbsp;Fedor Šimkovic IV,&nbsp;P. V. Sriluckshmy,&nbsp;Panu T. Vesanen,&nbsp;Mikio Nakahara","doi":"10.1140/epjqt/s40507-024-00243-z","DOIUrl":"10.1140/epjqt/s40507-024-00243-z","url":null,"abstract":"<div><p>With a growing interest in quantum technology globally, there is an increasing need for accessing relevant physical systems for education and research. In this paper we introduce a commercially available on-site quantum computer utilizing superconducting technology, offering insights into its fundamental hardware and software components. We show how this system can be used in education to teach quantum concepts and deepen understanding of quantum theory and quantum computing. It offers learning opportunities for future talent and contributes to technological progress. Additionally, we demonstrate its use in research by replicating some notable recent achievements.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00243-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140808002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eliminating sensing blind spots of field-enhanced Rydberg atomic antenna via an asymmetric parallel-plate resonator 通过非对称平行板谐振器消除场增强雷德贝格原子天线的传感盲点
IF 5.3 2区 物理与天体物理
EPJ Quantum Technology Pub Date : 2024-04-24 DOI: 10.1140/epjqt/s40507-024-00239-9
Bo Wu, Yan-Li Zhou, Zhen-Ke Ding, Rui-Qi Mao, Si-Xian Qian, Zhi-Qian Wan, Yi Liu, Qiang An, Yi Lin, Yun-Qi Fu
{"title":"Eliminating sensing blind spots of field-enhanced Rydberg atomic antenna via an asymmetric parallel-plate resonator","authors":"Bo Wu,&nbsp;Yan-Li Zhou,&nbsp;Zhen-Ke Ding,&nbsp;Rui-Qi Mao,&nbsp;Si-Xian Qian,&nbsp;Zhi-Qian Wan,&nbsp;Yi Liu,&nbsp;Qiang An,&nbsp;Yi Lin,&nbsp;Yun-Qi Fu","doi":"10.1140/epjqt/s40507-024-00239-9","DOIUrl":"10.1140/epjqt/s40507-024-00239-9","url":null,"abstract":"<div><p>Due to its large electric dipole moment, the Rydberg atom exhibits a strong response to weak electric fields, hence it is regarded as a highly promising atomic antenna. However, to enhance the reception sensitivity, split-ring resonators are needed normally, which will brings sensing blind spots. Thus it is not conducive to the application of full-coverage space communication. Here we propose that an atomic antenna with an asymmetric parallel-plate resonator, can not only enhance the received signal, but also eliminate sensing blind spots (pattern roundness can reach 7.8 dB while the split-ring resonator can be up to 39 dB). We analyze the influence of structural parameters on the field enhancement factor and directionality, and further discuss the limitation of the sensitivity by using thermal resistor noise theory. This work is expected to pave the way for the development of field-enhanced Rydberg atomic antennas that communicate without a blind spot.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00239-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140639475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Digital quantum simulation of gravitational optomechanics with IBM quantum computers 利用 IBM 量子计算机对引力光学机械进行数字量子模拟
IF 5.3 2区 物理与天体物理
EPJ Quantum Technology Pub Date : 2024-04-24 DOI: 10.1140/epjqt/s40507-024-00242-0
Pablo Guillermo Carmona Rufo, Anupam Mazumdar, Sougato Bose, Carlos Sabín
{"title":"Digital quantum simulation of gravitational optomechanics with IBM quantum computers","authors":"Pablo Guillermo Carmona Rufo,&nbsp;Anupam Mazumdar,&nbsp;Sougato Bose,&nbsp;Carlos Sabín","doi":"10.1140/epjqt/s40507-024-00242-0","DOIUrl":"10.1140/epjqt/s40507-024-00242-0","url":null,"abstract":"<div><p>We showcase the digital quantum simulation of the action of a Hamiltonian that governs the interaction between a quantum mechanical oscillator and an optical field, generating quantum entanglement between them via gravitational effects. This is achieved by making use of a boson-qubit mapping protocol and a digital gate decomposition that allow us to run the simulations in the quantum computers available in the IBM Quantum platform. We present the obtained results for the fidelity of the experiment in two different quantum computers, after applying error mitigation and post-selection techniques. The achieved results correspond to fidelities over 90%, which indicates that we were able to perform a faithful digital quantum simulation of the interaction and therefore of the generation of quantum entanglement by gravitational means in optomechanical systems.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00242-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140641692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum image representations based on density matrices in open quantum systems 开放量子系统中基于密度矩阵的量子图像表征
IF 5.3 2区 物理与天体物理
EPJ Quantum Technology Pub Date : 2024-04-19 DOI: 10.1140/epjqt/s40507-024-00241-1
Yingying Hu, Dayong Lu, Qianqian Zhang, Meiyu Xu
{"title":"Quantum image representations based on density matrices in open quantum systems","authors":"Yingying Hu,&nbsp;Dayong Lu,&nbsp;Qianqian Zhang,&nbsp;Meiyu Xu","doi":"10.1140/epjqt/s40507-024-00241-1","DOIUrl":"10.1140/epjqt/s40507-024-00241-1","url":null,"abstract":"<div><p>So far, research on quantum image representation has gone through more than 20 years. During this time, the quantum image representation models used have almost all been based on state vectors. However, in practical problems, the environment and the principal quantum system cannot be separated, and isolated quantum systems do not exist in principle. This case is often referred to as an open quantum system. In open quantum systems, many problems involve density matrices, such as the calculation of Von Neumann entropy, the quantization of coherence, and the operator-sum representations of quantum operations. Therefore, the existing quantum image representation models are only suitable for closed quantum systems. To this end, the paper proposes three models that can not only represent quantum images in an open quantum system but also decompose the evolution process of quantum images utilizing operator-sum decomposition. These three models are the representation model of quantum gray-scale images, the tensor product representation model of quantum color images, and the representation model of quantum color images based on mixed states in the Bloch sphere, respectively. All these image representation models have strong correlations among them and are very different from their classical analogues. Between them, the biggest difference is that the paper employs density matrices, inspired by incoherent-coherent states, to represent quantum images rather than classical state vectors. By means of one of the representation models proposed in the paper, we finally demonstrate the evolution process of the quantum image going through the amplitude damping channel.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00241-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140619689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient excitation-transfer across fully connected networks via local-energy optimization 通过局部能量优化实现全连接网络的高效激励传输
IF 5.3 2区 物理与天体物理
EPJ Quantum Technology Pub Date : 2024-04-19 DOI: 10.1140/epjqt/s40507-024-00238-w
S. Sgroi, G. Zicari, A. Imparato, M. Paternostro
{"title":"Efficient excitation-transfer across fully connected networks via local-energy optimization","authors":"S. Sgroi,&nbsp;G. Zicari,&nbsp;A. Imparato,&nbsp;M. Paternostro","doi":"10.1140/epjqt/s40507-024-00238-w","DOIUrl":"10.1140/epjqt/s40507-024-00238-w","url":null,"abstract":"<div><p>We study the excitation transfer across a fully connected quantum network whose sites energies can be artificially designed. Starting from a simplified model of a broadly-studied physical system, we systematically optimize its local energies to achieve high excitation transfer for various environmental conditions, using an adaptive Gradient Descent technique and Automatic Differentiation. We show that almost perfect transfer can be achieved with and without local dephasing, provided that the dephasing rates are not too large. We investigate our solutions in terms of resilience against variations in either the network connection strengths, or size, as well as coherence losses. We highlight the different features of a dephasing-free and dephasing-driven transfer. Our work gives further insight into the interplay between coherence and dephasing effects in excitation-transfer phenomena across fully connected quantum networks. In turn, this will help designing optimal transfer in artificial open networks through the simple manipulation of local energies.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00238-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140619690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The core of secondary level quantum education: a multi-stakeholder perspective 中学量子教育的核心:多方利益相关者的视角
IF 5.3 2区 物理与天体物理
EPJ Quantum Technology Pub Date : 2024-04-08 DOI: 10.1140/epjqt/s40507-024-00237-x
Avraham Merzel, Philipp Bitzenbauer, Kim Krijtenburg-Lewerissa, Kirsten Stadermann, Erica Andreotti, Daria Anttila, Maria Bondani, Maria Luisa (Marilù) Chiofalo, Sergej Faletič, Renaat Frans, Simon Goorney, Franziska Greinert, Leon Jurčić, Zdeňka Koupilová, Massimiliano Malgieri, Rainer Müller, Pasquale Onorato, Gesche Pospiech, Malte Ubben, Andreas Woitzik, Henk Pol
{"title":"The core of secondary level quantum education: a multi-stakeholder perspective","authors":"Avraham Merzel,&nbsp;Philipp Bitzenbauer,&nbsp;Kim Krijtenburg-Lewerissa,&nbsp;Kirsten Stadermann,&nbsp;Erica Andreotti,&nbsp;Daria Anttila,&nbsp;Maria Bondani,&nbsp;Maria Luisa (Marilù) Chiofalo,&nbsp;Sergej Faletič,&nbsp;Renaat Frans,&nbsp;Simon Goorney,&nbsp;Franziska Greinert,&nbsp;Leon Jurčić,&nbsp;Zdeňka Koupilová,&nbsp;Massimiliano Malgieri,&nbsp;Rainer Müller,&nbsp;Pasquale Onorato,&nbsp;Gesche Pospiech,&nbsp;Malte Ubben,&nbsp;Andreas Woitzik,&nbsp;Henk Pol","doi":"10.1140/epjqt/s40507-024-00237-x","DOIUrl":"10.1140/epjqt/s40507-024-00237-x","url":null,"abstract":"<div><p>Quantum physics (QP) education at the secondary school level is still in its infancy. Not only is there ongoing discussion about how to teach this subject, but there is also a lack of coherence in the selection of concepts to be taught, both across countries and over time. To contribute to this discussion, we investigated the perspectives of <span>(N= 39)</span> high school teachers, university-level physics educators, and physics education researchers regarding the essential concepts in QP and the corresponding illustrations that should be introduced at the secondary school level. We examined the prominence of different key concepts and illustrations, as well as the level of consensus among the various professional groups. Our analysis revealed that certain key concepts are universally valued across all professional groups, while others are specific to particular groups. Additionally, we explored the relationships between these key concepts and their corresponding illustrations. Overall, our study offers valuable insights into the perspectives of different stakeholders, emphasizing the essential concepts and visualizations that should be considered when designing and implementing the teaching of QP at the secondary school level.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00237-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140537485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A quantum moving target segmentation algorithm for grayscale video based on background difference method 基于背景差分法的灰度视频量子移动目标分割算法
IF 5.3 2区 物理与天体物理
EPJ Quantum Technology Pub Date : 2024-04-03 DOI: 10.1140/epjqt/s40507-024-00234-0
Lu Wang, Yuxiang Liu, Fanxu Meng, Wenjie Liu, Zaichen Zhang, Xutao Yu
{"title":"A quantum moving target segmentation algorithm for grayscale video based on background difference method","authors":"Lu Wang,&nbsp;Yuxiang Liu,&nbsp;Fanxu Meng,&nbsp;Wenjie Liu,&nbsp;Zaichen Zhang,&nbsp;Xutao Yu","doi":"10.1140/epjqt/s40507-024-00234-0","DOIUrl":"10.1140/epjqt/s40507-024-00234-0","url":null,"abstract":"<div><p>The classical moving target segmentation (MTS) algorithm in a video can segment the moving targets out by calculating frame by frame, but the algorithm encounters a real-time problem as the data increases. Recently, the benefits of quantum computing in video processing have been demonstrated, but it is still scarce for MTS. In this paper, a quantum moving target segmentation algorithm for grayscale video based on background difference method is proposed, which can simultaneously model the background of all frames and perform background difference to segment the moving targets. In addition, a feasible quantum subtractor is designed to perform the background difference operation. Then, several quantum units, including quantum cyclic shift transformation, quantum background modeling, quantum background difference, and quantum binarization, are designed in detail to establish the complete quantum circuit. For a video containing <span>(2^{m})</span> frames (every frame is a <span>(2^{n} times 2^{n})</span> image with <i>q</i> grayscale levels), the complexity of our algorithm is O<span>((n+q))</span>. This is an exponential speedup over the classical algorithm and also outperforms the existing quantum algorithms. Finally, the experiment on IBM Q demonstrates the feasibility of our algorithm in this noisy intermediate-scale quantum (NISQ) era.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00234-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140342895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信