{"title":"量子传感中的时间分辨率限制","authors":"Cong-Gang Song, Qing-yu Cai","doi":"10.1140/epjqt/s40507-025-00377-8","DOIUrl":null,"url":null,"abstract":"<div><p>Temporal resolution is a critical figure of merit in quantum sensing. This study combines the distinguishable condition of quantum states with quantum speed limits to establish a lower bound on interrogation time. When the interrogation time falls below this bound, the output state becomes statistically indistinguishable from the input state, and the information will inevitably be lost in noise. Without loss of generality, we extend these conclusions to time-dependent signal Hamiltonian. In theory, leveraging certain quantum control techniques allows us to calculate the minimum interrogation time for arbitrary signal Hamiltonian. Finally, we illustrate the impact of quantum speed limits on magnetic field measurements and temporal resolution.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00377-8","citationCount":"0","resultStr":"{\"title\":\"The temporal resolution limit in quantum sensing\",\"authors\":\"Cong-Gang Song, Qing-yu Cai\",\"doi\":\"10.1140/epjqt/s40507-025-00377-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Temporal resolution is a critical figure of merit in quantum sensing. This study combines the distinguishable condition of quantum states with quantum speed limits to establish a lower bound on interrogation time. When the interrogation time falls below this bound, the output state becomes statistically indistinguishable from the input state, and the information will inevitably be lost in noise. Without loss of generality, we extend these conclusions to time-dependent signal Hamiltonian. In theory, leveraging certain quantum control techniques allows us to calculate the minimum interrogation time for arbitrary signal Hamiltonian. Finally, we illustrate the impact of quantum speed limits on magnetic field measurements and temporal resolution.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00377-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-025-00377-8\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00377-8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Temporal resolution is a critical figure of merit in quantum sensing. This study combines the distinguishable condition of quantum states with quantum speed limits to establish a lower bound on interrogation time. When the interrogation time falls below this bound, the output state becomes statistically indistinguishable from the input state, and the information will inevitably be lost in noise. Without loss of generality, we extend these conclusions to time-dependent signal Hamiltonian. In theory, leveraging certain quantum control techniques allows us to calculate the minimum interrogation time for arbitrary signal Hamiltonian. Finally, we illustrate the impact of quantum speed limits on magnetic field measurements and temporal resolution.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.