{"title":"量子动力信用风险评估:一种使用混合量子-经典深度神经网络进行行相关预测分析的新方法","authors":"Minati Rath, Hema Date","doi":"10.1140/epjqt/s40507-025-00323-8","DOIUrl":null,"url":null,"abstract":"<div><p>The integration of Quantum Deep Learning (QDL) techniques into the landscape of financial risk analysis presents a promising avenue for innovation. This study introduces a framework for credit risk assessment in the banking sector, combining quantum deep learning techniques with adaptive modeling for Row-Type Dependent Predictive Analysis (RTDPA). By leveraging RTDPA, the proposed approach tailors predictive models to different loan categories, aiming to enhance the accuracy and efficiency of credit risk evaluation. While this work explores the potential of integrating quantum methods with classical deep learning for risk assessment, it focuses on the feasibility and performance of this hybrid framework rather than claiming transformative industry-wide impacts. The findings offer insights into how quantum techniques can complement traditional financial analysis, paving the way for further advancements in predictive modeling for credit risk.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00323-8","citationCount":"0","resultStr":"{\"title\":\"Quantum powered credit risk assessment: a novel approach using Hybrid Quantum-Classical Deep Neural Network for Row-Type Dependent Predictive Analysis\",\"authors\":\"Minati Rath, Hema Date\",\"doi\":\"10.1140/epjqt/s40507-025-00323-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The integration of Quantum Deep Learning (QDL) techniques into the landscape of financial risk analysis presents a promising avenue for innovation. This study introduces a framework for credit risk assessment in the banking sector, combining quantum deep learning techniques with adaptive modeling for Row-Type Dependent Predictive Analysis (RTDPA). By leveraging RTDPA, the proposed approach tailors predictive models to different loan categories, aiming to enhance the accuracy and efficiency of credit risk evaluation. While this work explores the potential of integrating quantum methods with classical deep learning for risk assessment, it focuses on the feasibility and performance of this hybrid framework rather than claiming transformative industry-wide impacts. The findings offer insights into how quantum techniques can complement traditional financial analysis, paving the way for further advancements in predictive modeling for credit risk.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00323-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-025-00323-8\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00323-8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Quantum powered credit risk assessment: a novel approach using Hybrid Quantum-Classical Deep Neural Network for Row-Type Dependent Predictive Analysis
The integration of Quantum Deep Learning (QDL) techniques into the landscape of financial risk analysis presents a promising avenue for innovation. This study introduces a framework for credit risk assessment in the banking sector, combining quantum deep learning techniques with adaptive modeling for Row-Type Dependent Predictive Analysis (RTDPA). By leveraging RTDPA, the proposed approach tailors predictive models to different loan categories, aiming to enhance the accuracy and efficiency of credit risk evaluation. While this work explores the potential of integrating quantum methods with classical deep learning for risk assessment, it focuses on the feasibility and performance of this hybrid framework rather than claiming transformative industry-wide impacts. The findings offer insights into how quantum techniques can complement traditional financial analysis, paving the way for further advancements in predictive modeling for credit risk.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.